Skip to main content

Advertisement

Log in

Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al–low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Takahashi, H. Yoshida, and S. Hiwatashi: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Proceedings on CD, Ghent, Belgium, 2002, pp. 103–11.

  2. J. Van Slycken, P. Verleysen, J. Dergrieck, J. Bouquerel, and B.C. De Cooman: Mater. Sci. Eng., A, 2007, vols. 460–461, pp. 516–24.

    Google Scholar 

  3. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  4. P. Jacques, Q. Furnémont, S. Godet, T. Pardoen, K. Conlon, and F. Delannay: Philos. Mag., 2006, vol. 86, pp. 2371–92.

    Article  CAS  ADS  Google Scholar 

  5. P.J. Jacques, E. Girault, Ph. Harlet, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1061–67.

    Article  CAS  Google Scholar 

  6. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, A. Moriai, and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45.

    Article  CAS  Google Scholar 

  7. P. Jacques, Q. Furnémont, A. Mertens, and F. Delannay: Philos. Mag. A, 2001, vol. 81, pp. 1789–1812.

    Article  CAS  ADS  Google Scholar 

  8. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068–74.

    Article  CAS  Google Scholar 

  9. V.F. Zackay, E.R. Parker, D. Fahr, and R.A. Busch: ASM Trans. Q., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  10. A. Pichler, S. Traint, G. Arnolder, P. Stiaszny, M. Blaimschein, and E.A. Werner: Iron Steelmaker, 2003, vol. 30, pp. 21–31.

    CAS  Google Scholar 

  11. S.C. Baik, S. Kim, Y.S. Jin, and O. Kwon: ISIJ Int., 2001, vol. 41, pp. 290–97.

    Article  CAS  Google Scholar 

  12. H. Matsuda, F. Kitano, K. Hasegawa, T. Urabe, and Y. Hosoya: Steel Res., 2002, vol. 73, pp. 211–17.

    CAS  Google Scholar 

  13. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens: Galvatech’04 6th Int. Conf. on Zinc and Zinc Alloy Coated Sheet Steels, AIST, Warrendale, PA, 2004, pp. 1123–34.

    Google Scholar 

  14. J. Mahieu, B.C. De Cooman, J. Maki, and S. Claessens: Iron Steelmaker, 2002, vol. 29, pp. 29–34.

    Article  CAS  Google Scholar 

  15. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–08.

    Article  CAS  Google Scholar 

  16. N. Ebrill, Y. Durandet, and L. Strezov: Galvatech’01 Conf. Proc., Verlag Stahleisen, Düsseldorf, Germany, 2001, pp. 329–36.

  17. E. Bellhouse, A. Mertens, and J. McDermid: Mater. Sci. Eng., A, 2007, vol. 463, pp. 147–56.

    Article  Google Scholar 

  18. J. Mahieu, S. Classens, B.C. De Cooman, and F. Goodwin: Galvatech’04 6th Int. Conf. on Zinc and Zinc Alloy Coated Sheet Steels, AIST, Warrendale, PA, 2004, pp. 529–38.

    Google Scholar 

  19. E.M. Bellhouse and J.R. McDermid: Mater. Sci. Eng., A, 2008, vol. 491, pp. 39–46.

    Article  Google Scholar 

  20. P. Jacques, X. Cornet, Ph. Harlet, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.

    Article  CAS  Google Scholar 

  21. O. Matsumura, Y. Sakuma, and H. Takechi: Trans. ISIJ, 1987, vol. 27, pp. 570–79.

    CAS  Google Scholar 

  22. E. Girault, P. Jacques, P. Ratchev, J. Van Humbeeck, B. Verlinden, and E. Aernoud: Mater. Sci. Eng., A, 1999, vols. 273–275, pp. 471–74.

    Google Scholar 

  23. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck: Scripta Mater., 2001, vol. 44, pp. 885–92.

    Article  CAS  Google Scholar 

  24. A.K. Srivastava, D. Battacharjee, G. Jha, N. Gope, and S.B. Singh: Mater. Charact., 2006, vol. 57, pp. 127–35.

    Article  CAS  Google Scholar 

  25. A.K. Srivastava, D. Battacharjee, G. Jha, N. Gope, and S.B. Singh: Mater. Sci. Eng., A, 2007, vols. 445–446, pp. 549–57.

    Google Scholar 

  26. A.N. Vasilakos, J. Ohlert, K. Giasla, G.N. Haidemenopoulos, and W. Bleck: Steel Res., 2002, vol. 73, pp. 249–52.

    CAS  Google Scholar 

  27. M. De Meyer, D. Vanderschueren, and B.C. De Cooman: ISIJ Int., 1999, vol. 39, pp. 813–22.

    Article  Google Scholar 

  28. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Article  CAS  Google Scholar 

  29. H.C. Chen, H. Era, and M. Shimizu: Metall. Trans. A, 1989, vol. 20A, pp. 437–45.

    CAS  ADS  Google Scholar 

  30. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay: Mater. Sci. Eng., A, 1999, vols. 273–275, pp. 475–79.

    Google Scholar 

  31. A. Mertens, P.J. Jacques, L. Zhao, S.O. Kruijver, J. Sietsma, and F. Delannay: J. Phys. IV JP, 2003, vol. 112, pp. 305–08.

    Article  CAS  Google Scholar 

  32. N. Fonstein, N. Pottore, S.H. Lalam, and D. Bhattacharya: Austenite Formation and Decomposition, E.B. Damm and M.J. Merwin, eds., TMS, Warrendale, PA, 2003, pp. 549–61.

    Google Scholar 

  33. A. Mertens and J. McDermid: Materials Science and Technology 2005—Developments in Sheet Products for Automotive Applications, Proceedings on CD, Pittsburgh, PA, 2005, pp. 199–210.

  34. J. McDermid, S. Dionne, O. Dremailova, B. Voyzelle, E. Essadiqi, E. Baril, and F. Goodwin: paper 2005-01-0495, 2005 SAE World Congress, SAE, Detroit, MI, 2005.

  35. D. Krizan, B.C. De Cooman, and J. Antonissen: Int. Conf. Adv. High Strength Sheet Steels Autom. Appl. Proc., AIST, Warrendale, PA, 2004, pp. 205–16.

  36. E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay: Mater. Charact., 1998, vol. 40, pp. 111–18.

    Article  CAS  Google Scholar 

  37. “ASTM Standard E975-03, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation,” Annual Book of ASTM Standards, ASTM International, West Conshocken, PA, 2003.

  38. R. Ruhl and M. Cohen: Trans. TMS-AIME, 1969, vol. 245, pp. 241–51.

    CAS  Google Scholar 

  39. D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  40. “ASTM Standard E8M-01e2, Standard Test Methods for Tension Testing of Metallic Materials [Metric],” Annual Book of ASTM Standards, ASTM International, West Conshocken, PA, 2001.

  41. A.K. Sachdev: Acta Metall., 1983, vol. 31, pp. 2037–42.

    Article  CAS  Google Scholar 

  42. T. Sakaki, K. Sugimoto, and T. Fukuzato: Acta Metall., 1983, vol. 31, pp. 1737–46.

    Article  CAS  Google Scholar 

  43. S.S. Hansen and R.R. Pradhan: Proc. Symp. at the 110th AIME Annual Meeting, TMS-AIME, Warrendale, PA, 1981, pp. 113–44.

  44. M. Sudo and I. Tsukatani: Technology of Continuously Annealed Cold-Rolled Sheet Steel, Proc. Symp. TMS-AIME Fall Meeting, TMS-AIME, Warrendale, PA, 1985, pp. 341–60.

  45. A. Mark: Doctoral Thesis, Queen’s University, Kingston, ON, Canada, 2007.

  46. P.J. Jacques, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    Article  CAS  ADS  Google Scholar 

  47. J. Wang and S. Van Der Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    Article  CAS  ADS  Google Scholar 

  48. K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa: ISIJ Int., 1993, vol. 33, pp. 775–82.

    Article  CAS  Google Scholar 

  49. S. Takeuchi: J. Phys. Soc. Jpn., 1969, vol. 27, pp. 929–40.

    Article  CAS  ADS  Google Scholar 

  50. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd., London, United Kingdom, 1978, p. 11.

    Google Scholar 

  51. M. Zhang, L. Li, Y. Su, R. Fu, Z. Wan, and B.C. De Cooman: Steel Res. Int., 2007, vol. 78, pp. 501–05.

    CAS  Google Scholar 

  52. H. Yu, S. Li, and Y. Gao: Mater. Charact., 2006, vol. 57, pp. 160–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank U.S. Steel Canada, Xstrata Zinc Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the members of the McMaster Steel Research Centre for support of this research through their funding of the NSERC/U.S. Steel Canada/Xstrata Zinc Industrial Research Chair. The authors also thank the following people from McMaster University (Hamilton, ON, Canada): Jason Lavallée (galvanizing simulator technologist), Jim Britten (XRD), Steve Koprich (SEM), and Rob Lemmon (tensile testing). The authors also thank the Academic User Access Facility (AUAF) program of the Materials Technology Laboratory (Ottawa, ON, Canada) for the fabrication of the TRIP steels used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.R. McDermid.

Additional information

Manuscript submitted August 21, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellhouse, E., McDermid, J. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels. Metall Mater Trans A 41, 1460–1473 (2010). https://doi.org/10.1007/s11661-010-0185-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0185-7

Keywords

Navigation