Skip to main content
Log in

Microstructural Evolution and Ductile-to-Brittle Transition in a Low-Carbon MnCrMoNiCu Heavy Plate Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 01 August 2018

This article has been updated

Abstract

Low carbon MnCrMoNiCu alloyed steels are typically used to produce highly ductile thick plates for offshore structures and bulk shipbuilding. The current study revealed how microscopic factors affect the toughness and the occurrence of cleavage fracture of the steel. In this regard, a series of thermal treatments was performed on the test steel by employing a thermomechanical simulator. These involved reheating samples at different temperatures (1168 K to 1623 K (895 °C to 1350 °C))  producing different prior austenite grain sizes, followed by a continuous cooling transformation process. The Charpy V notch (CVN) toughness was determined, and the effect of the austenite grain size on the ductile–brittle transition-temperatures of the steel was investigated. The microstructural evolution of the austenite grain sizes was studied, fracture features were characterized, the critical event for cleavage fracture was identified, and the local cleavage fracture stress σf was calculated. The CVN toughness and σf were maximized in the steel which was reheated at 1273 K (1000 °C) and containing refined lathlike bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Change history

  • 01 August 2018

    In the original article the following errors occurred: In the last sentence of the first paragraph in the Experimental Procedures section, 11 mm × 1 mm × 75 mm is incorrect. The correction dimensions are 11 mm × 11 mm × 75 mm.

References

  1. J. W. Morris Jr.: Science, 2008, vol. 320, pp.1022-23.

    Article  Google Scholar 

  2. T. Hanamura, F. Yin and K. Nagai: ISIJ Int., 2004, vol.44, pp.610-17.

    Article  Google Scholar 

  3. J. W. Morris, Jr.: ISIJ Int., (2011), vol. 51, pp.1569-75.

    Article  Google Scholar 

  4. S. Y. Shin, K. J. Woo, B. Hwang, S. Kim, and S. Lee: Metall. Mater. Trans. A, 2009, vol.40A, pp.867-76.

    Article  Google Scholar 

  5. J. H. Chen, R. Cao (2014): Micromechanism of Cleavage Fracture of Metals: A Comprehensive Microphysical Model for Cleavage Cracking in Metals. Elsevier, Oxford.

    Google Scholar 

  6. R. Cao, X. B. Zhang, Z. Wang, Y. Peng, W. S. Du, Z. L. Tian, and J. H. Chen: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 815-34.

    Article  Google Scholar 

  7. A. Di Schino, C. Guarnaschelli: Mater. Lett., 2009, vol. 63, pp. 1968-72.

    Article  Google Scholar 

  8. R. Cao, J Li, D. S. Liu, J.Y. Ma, and J.H. Chen: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2999-3014.

    Article  Google Scholar 

  9. N. Isasti, D. Jorge-Badiola, M. L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4972-82.

    Article  Google Scholar 

  10. A. F. Gourgues, H. M. Flower, T. C. Lindley: Mater. Sci. Technol., 2000, 16, 26-40.

    Article  Google Scholar 

  11. A. Lambert-Perlade, A. F. Gourgues, J. Besson, T. Sturel, and A. Pineau: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1039-53.

    Article  Google Scholar 

  12. J. W. Morris, C. S. Lee, Z. Guo: ISIJ Int., 2003, vol.43, pp. 410-19.

    Article  Google Scholar 

  13. J.W. Morris, C. Kinney, K. Pytlewski, Y. Adachi: Sci. Technol. Adv. Mater., 2013, vol. 14, pp.1-9.

    Article  Google Scholar 

  14. M. Tsuboi, A. Shibata, D. Terada, N. Tsuji: Metall. Mater. Trans. A., 2017, 48A, pp. 3261-68.

    Article  Google Scholar 

  15. B. Huang, C. G. Lee, S. J. Kim: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 717-28.

    Google Scholar 

  16. S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, D. Porter: Mater. Sci. Eng. A, 2018, vol.712, pp. 671-80.

    Article  Google Scholar 

  17. A. Ghosh, S. Das, S. Chatterjee: Mater. Sci. Eng. A, 2008, vol. 486, pp.152–57.

    Article  Google Scholar 

  18. S. K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2003, vol.34A, pp.2493-2504.

    Article  Google Scholar 

  19. S. K. Dhua, D. Mukerjee, D. S. Sarma: Metall. Mater. Trans. A, 2001, vol.32A, pp.2259-70.

    Article  Google Scholar 

  20. S. K. Dhua, A. Ray, D.S. Sarma: Mater. Sci. Eng. A, 2001, vol. 318, pp.197–210.

    Article  Google Scholar 

  21. P. K. Ray, R. I. Ganguly, A. K. Panda: Mater. Sci. Eng. A, 2003, vol. 346, pp.122–31.

    Article  Google Scholar 

  22. Y. You, X. M. Wang, C. J. Shang: Acta Metall. Sin., 2012, vol.48, pp.1290-98.

    Article  Google Scholar 

  23. D. S. Liu, B. G. Cheng, Y. Y. Cheng: Metall. Mater. Trans. A, 2013, vol.44A, pp.440-55.

    Article  Google Scholar 

  24. B. G. Cheng, M. Luo, D.S. Liu: Ironmak. Steelmak., 2015, vol.42, pp.608-17.

    Article  Google Scholar 

  25. D. S. Liu, B. G. Cheng, Y. Y. Cheng: Acta Metall. Sin., 2012, vol.48, pp.334-42.

    Article  Google Scholar 

  26. G. Spanos, R. W. Fonda, R. A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol.26A, pp.3277-93.

    Article  Google Scholar 

  27. M. Shom° O. N. Mohanty: Metall. Mater. Trans. A, 2006, vol.37A, pp.2159-69.

    Article  Google Scholar 

  28. D. Chae, C. J. Young, D. M. Goto, and D. A. Koss: Metall. Mater. Trans. A, 2001, vol.32A, pp.2229-37.

    Article  Google Scholar 

  29. S. K. Dhua, D. Mukerjee, D. S. Sarma: ISIJ Int., 2002, vol. 42, pp.290-98.

    Article  Google Scholar 

  30. K. Banerjee, U. K. Chatterjee: Metall. Mater. Trans. A, 2003, vol.34A, pp.1297-1309.

    Article  Google Scholar 

  31. K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol.41A, pp. 3161-72.

    Article  Google Scholar 

  32. D. S. Liu, Q.L. Li, T. Emi: Metall. Mater. Trans. A, 2011, vol.42A, pp. 1349-61.

    Article  Google Scholar 

  33. W. L. Server: J. Eng. Mater. Technol., 1978, vol. 100, pp. 183-88.

    Article  Google Scholar 

  34. X. F. Zhang, P. Han, H. Terasaki, M. Sato, and Y. Komizo: J. Mater. Sci. Technol., 2012, vol.28, pp.241-48.

    Article  Google Scholar 

  35. H. Terasaki, and Y. I. Komizo: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2683-89.

    Article  Google Scholar 

  36. G. Mao, R. Cao, X. Guo, Y. Jiang, and J. H. Chen: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5783-98.

    Article  Google Scholar 

  37. E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo: Acta Mater., 2015, vol.98, pp.81-93.

    Article  Google Scholar 

  38. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557-71.

    Article  Google Scholar 

  39. S. Y. Sung, S. S. Sohn, S. Y. Shin, K. S. Oh, and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3036-50.

    Article  Google Scholar 

  40. J. H. Chen, L. Zhu and H. Ma: Acta Metall. Mater. 1990, vol. 38, pp. 2527-35.

    Article  Google Scholar 

  41. M. Shome, D. S. Sarma, O. P. Gupta, and O. N. Mohanty: ISIJ Int., 2003, vol. 43, pp.1431-37.

    Article  Google Scholar 

  42. L. Rancel, M. Gómez, S. F. Medina, I. Gutierrez: Mater. Sci. Eng. A, 2011, vol. 530, pp. 21–27.

    Article  Google Scholar 

  43. J. P. Naylor (1979): Metall. Trans. A, 10, 861-73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Jiangsu Shagang Group Co., Ltd. Dr. Q.X. Feng is thanked for performing the thermomechanical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Liu.

Additional information

Manuscript submitted November 2, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Luo, M., Cheng, B. et al. Microstructural Evolution and Ductile-to-Brittle Transition in a Low-Carbon MnCrMoNiCu Heavy Plate Steel. Metall Mater Trans A 49, 4918–4936 (2018). https://doi.org/10.1007/s11661-018-4823-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4823-9

Navigation