Skip to main content
Log in

The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A decrease in the packet size or lath width of bainitic-martensitic steels produces a simultaneous increase of toughness and yield stress. Specific interpretations are necessary to give the actual relationships since classical theories of the grain size effect cannot be directly applied to both of these microstructural parameters. To obtain these specific interpretations, a detailed analysis of lath orientations inside a packet is necessary. This analysis reveals that assumptions such as all laths in any one packet are similarly oriented are unfounded and that in fact a packet contains many high angle lath boundaries which are given by laths adopting different Kurjumov-Sachs orientation variants during the γ → α transformation. The yield stress then depends on the average lath “diameter” which is a function of lath width and length, the latter dimension being related to the packet diameter. A Petch agreement is not found, rather the yield stress is found to be related to the reciprocal of the average lath diameter. A theoretical analysis shows that for very fine grain sizes, as encountered in bainites and martensites, macroscopically heterogeneous deformation (a necessary condition leading to the Petch formulation) tends to vanish and that for macroscopically homogeneous deformation the yield stress is expected to be related to the reciprocal of the grain diameter. The fracture transition temperature is determined by the particular fracture characteristics of these steels. It is possible to explain the fracture of bainite and lath martensite without recourse to concepts such as “effective grain size” or “covariant packet size”. In spite of the different lath orientations inside a packet, a brittle crack may adopt an average, approximately straight fracture direction across a packet by following a particular group of different fracture planes that are separated by low angle boundaries. At a packet boundary the crack must find another group of fracture planes, which will impose an important deviation of the crack. At the transition temperature, the controlling event in the fracture sequence is this crack deviation, which imposes an energy requirement for the crack to undergo high angle deviations across the first laths that are adjacent to the packet boundary, until the new average fracture direction is found. Using this model the transition temperature can be related to a logarithmic function of the product of the packet diameter and lath width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Roberts:Met. Trans., 1970, vol. 1, pp. 3287–94.

    CAS  Google Scholar 

  2. T. Inoue, S. Matsuda, Y. Okamura, and K. Aoki:Trans. Jpn. Inst. Met, 1970, vol. 11, pp. 36–43.

    CAS  Google Scholar 

  3. P. Brozzo, G. Buzzichelli, A. Mascanzoni, and M. Mirabile:Met. Sci., 1977, vol. 11, pp. 123–29. 4. F. B. Pickering: Symposium Transformation and Hardenability in Steels, Climax Molybdenum Co. and the University of Michigan, February 1967.

    Article  CAS  Google Scholar 

  4. D. W. Smith and R. F. Hehemann:J. Iron Steel Inst, 1971, vol. 209, pp. 476–81.

    CAS  Google Scholar 

  5. K. J. Irivine and F. B. Pickering:J. Iron Steel Inst, 1958, vol. 188, pp. 101–12.

    Google Scholar 

  6. Y. Ohmori, H. Ohtani, and T. Kunitake:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 146–54.

    CAS  Google Scholar 

  7. D. Guttmann and P. R. Krahe:Mém Sci. Rev. Métall., 1973, vol. 7-8, pp. 559–67.

    Google Scholar 

  8. V. Ohmori, H. Ohtani, and T. Kunitake: Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 250–59.

    CAS  Google Scholar 

  9. U. F. Kocks:Phil. Mag., 1966, vol. 13, pp. 541–66.

    Google Scholar 

  10. R. L. Fullman:Trans. AIME, 1953, vol. 197, pp. 447 and 1267.

    CAS  Google Scholar 

  11. W. R. Tyson:Acta Met, 1963, vol. 11, pp. 61–62.

    Article  CAS  Google Scholar 

  12. G. R. Speich and P. R. Swann:J. Iron Steel Inst., 1965, vol. 203, pp. 480–85.

    CAS  Google Scholar 

  13. J. M. Chilton, C. J. Barton, and G. R. Speich:J. Iron Steel Inst., 1970, vol. 208, pp. 184–93.

    CAS  Google Scholar 

  14. C. A. Apple, R. N. Caron, and G. Krauss:Met. Trans., 1974, vol. 5, pp. 593–99.

    Article  CAS  Google Scholar 

  15. S. Matsuda, T. Inoue, and M. Ogasawara:Trans. JIM, 1968, vol. 9, pp. 343–48.

    CAS  Google Scholar 

  16. U. Franzoni and A. Mascanzoni: Technical Report no. 2, European Community ECSC Res. Proj. Number: 7210-MA-4-402, 1977.

  17. U. H. Lindborg and B. L. Averbach:Acta Met., 1966, vol. 14, pp. 1583–93.

    Article  CAS  Google Scholar 

  18. J. P. Naylor and P. R. Krahe:Met. Trans. A, 1975, vol. 6A, pp. 594–98.

    CAS  Google Scholar 

  19. G. T. Hahn, B. L. Averbach, W. S. Owen, and M. Cohen:Fracture, p. 91, Technology Press of MIT, John Wiley and Sons Inc., N.Y., 1959.

    Google Scholar 

  20. N. J. Petch:ibid, Technology Press of MIT, John Wiley and Sons Inc., N.Y., 1959. p. 54.

    Google Scholar 

  21. A. H. Cottrell:Trans. TMS-AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  22. J. R. Low:Relation of Properties to Microstructure, p. 163, ASM, Cleveland, OH, 1954.

    Google Scholar 

  23. W. S. Owen: I.S.I. Special Report 81, pp. 1–9, 1963.

  24. A. S. Tetelman and A. J. McEvily:Fracture of Structural Materials, John Wiley and Sons Inc., N.Y., 1967.

    Google Scholar 

  25. A. R. Cox:International Conf. on Strength of Metals and Alloys, Tokio, Spetember 1967.

  26. R. W. Honeycombe and F. B. Pickering:Met. Trans., 1972, vol. 3, pp. 1099–1112.

    Article  CAS  Google Scholar 

  27. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  28. E. Smith and P. J. Worthington:Phil. Mag., 1964, vol. 9, pp. 211–16.

    Google Scholar 

  29. J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro:Phil. Mag., 1951, vol. 42, pp. 351–64.

    Google Scholar 

  30. B. A. Bilby and R. Bullough:Phil. Mag., 1954, vol. 45, pp. 631–46.

    CAS  Google Scholar 

  31. J. Friedel:Les dislocations, Gauthier-Villars, Paris, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly at the Centre des Matériaux de l’Ecole Nationale Supérieure des Mines de Paris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naylor, J.P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels. Metall Trans A 10, 861–873 (1979). https://doi.org/10.1007/BF02658305

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658305

Keywords

Navigation