Skip to main content
Log in

Effect of microstructure on hydrogen embrittlement of weld-simulated HSLA-80 and HSLA-100 steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

HSLA-80 and HSLA-100 steels have been subjected to weld-simulated grain-coarsened heat-affected zone (GCHAZ) and grain-refined heat-affected zone (GRHAZ) treatments at peak temperatures of 1350 °C and 950 °C, respectively, followed by varying cooling rates to approximate the weld heat inputs of 10 to 50 kJ/cm. Subsequent slow strain rate testing in synthetic seawater has been employed to assess the hydrogen embrittlement (HE) propensity of the materials. It is indicated that in spite of an increase in strength after weld simulation, further ductility deterioration, compared to the base material under similar testing conditions, did not occur in GCHAZ HSLA-100 steel and for low heat input condition of GRHAZ HSLA-80. This has been attributed to their HE resistant microstructures. Predominant acicular ferrite or lath martensite or a combination of both imparts resistance to HE, as observed in the case of grain-coarsened HSLA-100 and for the low heat input grain-refined HSLA-80 steels. The deleterious effect of bainitic-martensitic microstructure has been reflected in the ductility values of grain-coarsened HSLA-80, which is in agreement with the observation of higher susceptibility of the as-received HSLA-100 steel having a similar structure. However, contrary to its beneficial effect in the as-received HSLA-80, an acicular ferrite structure has shown vulnerability toward HE for high heat input grain-refined HSLA-80. This has been attributed to the presence of polygonal ferrite and to the development of an HE susceptible substructure on GRHAZ weld simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, and H.H. Vanderveldt: J. Ship Production, 1986, vol. 2, pp. 145–62.

    Google Scholar 

  2. E.Z. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, and J.H. Gudas: Nav. Eng. J., 1990, May, pp. 63–82.

  3. C.A. Zanis, P.W. Holsberg, and E.C. Dunn, Jr.: Welding J., 1980, vol. 92, pp. 355s-63s.

    Google Scholar 

  4. E.A. Metzbower, J. Stoop, C.T. Fuji, and F.W. Fraser: J. Met., 1978, vol. 30, pp. 15–20.

    CAS  Google Scholar 

  5. J. Woodward and R.A. Cottis: Proc. Int. Conf. on Hydrogen Effects in Materials, A.W. Thompson and N.R. Moody, eds., TMS, Warrendale, PA, 1992, pp. 657–67.

    Google Scholar 

  6. M.R. Krishnadev, W.L. Zhang, J.T. Bowker, R. Rene, V. Vadhya, and A. Gordon: Trans. Indian Inst. Met., 1996, vol. 49, pp. 171–83.

    CAS  Google Scholar 

  7. J.T. Bowker, J.T. McGrath, J.A. Gianetto, and M.W. Letts: Proc. Int. Conf. on Weld Failures, The Welding Institute, London, 1988, pp. 173–84.

    Google Scholar 

  8. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93.

    CAS  Google Scholar 

  9. K. Banerjee and U.K. Chatterjee: Iron Steel Inst. Jpn., 1999, vol. 39, pp. 47–55.

    CAS  Google Scholar 

  10. K. Banerjee and U.K. Chatterjee: Mater. Sci. Technol., 2000, vol. 16, pp. 517–22.

    CAS  Google Scholar 

  11. C.A. Zanis: SAMPE Q., 1978, Jan., pp. 8–12.

  12. J. Woodward and R.A. Cottis: Hydrogen Transport and Cracking of Metals, A. Turnbull, ed., The Institution of Materials, London, 1995, pp. 253–67.

    Google Scholar 

  13. I.M. Bernstein, R. Garber, and G.M. Pressouyre: in Effects of Hydrogen on Behaviour of Metals, A.W. Thompson and I.M. Bernstein, eds., TMS, New York, NY, 1976, pp. 27–58.

    Google Scholar 

  14. A.W. Thompson and I.M. Bernstein: Advances in Corrosion Science and Technology, R.W. Staehle and M. Fontana, eds., Plenum Press, New York, NY, 1980, vol. 7, pp. 53–175.

    Google Scholar 

  15. R. Garber, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  16. I.M. Bernstein, A.W. Thompson, F. Gutierrez-Solana, and L. Christodoulou: Current Solutions to Hydrogen Problems in Steels, C.G. Interrente and G. Pressouyre, eds., ASM, Metals Park, OH, 1982, pp. 259–62.

    Google Scholar 

  17. Naval Research Laboratory, Washington, DC, private communication, 1998.

  18. S.W. Thompson, D.J. Colvin, and G. Krauss, Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–88.

    CAS  Google Scholar 

  19. R. Rozenak, L.M. Robertson, and H.K. Birnbaum: Acta Metall. Mater., 1990, vol. 38, pp. 2031–40.

    Article  CAS  Google Scholar 

  20. V.G. Gavriljuk, H. Hännien, Y. Yagodsinski, A.V. Tarasenko, S. Täntinen, and K. Ullako: Scripta Metall. Mater., 1993, vol. 28, pp. 900–06.

    Google Scholar 

  21. H.J. Maier, W. Popp, and H. Kaesche: Mater. Sci.Eng. A, 1995, vol. 191, pp. 17–26.

    Article  Google Scholar 

  22. R. Garber and I.M. Bernstein: Environmental Degradation of Engineering Materials, Virginia Polytechnic Institute Press, Blacksburg, VA, 1978, pp. 463–73.

    Google Scholar 

  23. A.W. Thompson: Environmental Degradation of Engineering Materials, Virginia Polytechnic Institute Press, Blacksburg, VA, 1978, pp. 3–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, K., Chatterjee, U.K. Effect of microstructure on hydrogen embrittlement of weld-simulated HSLA-80 and HSLA-100 steels. Metall Mater Trans A 34, 1297–1309 (2003). https://doi.org/10.1007/s11661-003-0241-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0241-7

Keywords

Navigation