Skip to main content
Log in

A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress–strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10−6 to 750 s−1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b :

Magnitude of the Burgers vector (m)

C i :

Concentration of specific element i in expression for σss (wt pct)

C ss :

Equivalent solid solution concentration (wt pct)

C r ss :

Value of Css for reference alloy (wt pct)

c 1 :

Conversion factor for yield stress from 0K to room temperature

\( \bar{F} \) :

Mean interaction force between particle and dislocation (N)

f :

Particle volume fraction

f o :

Volume fraction of non-shearable Orowan particles

f r o :

Value fraction of fo in reference alloy

k i :

Scaling factor in expression for σss (MPa/(wt pct)2/3)

k 1 :

Parameter related to statistical storage of dislocations (m−1)

k 1 g :

Parameter related to statistical storage of geometrically necessary dislocations (m−1)

k 2 :

Parameter related to dynamic recovery of dislocations

k 02 g :

Constant in expression for k2g

k 2 g :

Parameter related to dynamic recovery of geometrically necessary dislocations

k 02 :

Constant in expression for k2

k *2 :

Constant in expression for dynamic recovery of dislocations

k r2 :

Value of k2 in reference alloy

k 3 :

Parameter determining the solute dependence of k2 (N/m2 wt pct3/4)

l :

Mean planar particle spacing along the bending dislocation (m)

M :

Taylor factor

M r :

Taylor factor for reference alloy

m :

Constant in expression for dynamic recovery of dislocations

N i :

Number of particles per unit volume within the size class ri (#/m3)

p :

Constant in expression for σ

q :

Constant in expression for σ

Q d :

Activation energy for diffusion (J/mol)

R :

Universal gas constant (8.314 J/Kmol)

r :

Particle radius (m)

r i :

Particle radius within size class i (m)

r c :

Critical particle radius for the transition from shearing to bypassing (m)

t :

Time (seconds)

T :

Temperature (K or °C)

T m :

Melting temperature (K or °C)

T r :

Room temperature (K or °C)

Z :

Zener–Hollomon parameter (s−1)

Z 0 :

Zener–Hollomon parameter at 0 K (s−1)

Z r :

Zener–Hollomon parameter for reference alloy (s−1)

Z s :

Constant in expression for k2 (s−1)

Z g :

Constant in expression for k2g (s−1)

α :

Constant in expression for σd

ΔG :

Activation energy required to overcome obstacles without aid from external stresses (J/mol)

ɛ :

Tensile strain

\( \dot{\varepsilon } \) :

Tensile strain rate (s−1)

\( \dot{\varepsilon }_{0} \) :

Reference strain rate in expression for σ (s−1)

\( \dot{\varepsilon }_{r} \) :

Strain rate for reference alloy (s−1)

ɛ p :

Plastic tensile strain

θ g :

Material constant in expression for the temperature dependence of μ

λ g :

Geometric slip distance (m)

μ :

Shear modulus (N/m2)

μ r :

Shear modulus for reference alloy (N/m2)

μ 0 :

Shear modulus at 0 K (N/m2)

ρ g :

Number density of geometrically necessary dislocations (m−2)

ρ s :

Number density of the statistically stored dislocations (m−2)

σ :

Flow stress (N/m2)

\( \hat{\sigma } \) :

Yield stress at 0 K (N/m2)

σ d :

Net contribution from dislocation hardening to flow stress (N/m2)

σ i :

Intrinsic yield strength of pure aluminum (N/m2)

σ p :

Contribution from hardening precipitates to the overall macroscopic yield strength (N/m2)

σ p1 :

Contribution from clusters to the overall macroscopic yield strength (N/m2)

σ p2 :

Contribution from hardening β″ and β′ to the overall macroscopic yield strength (N/m2)

σ ss :

Contribution from alloying elements in solid solution to the overall macroscopic yield strength (N/m2)

σ y :

Overall macroscopic yield strength at room temperature (N/m2)

References

  1. G. Edwards, K. Stiller, G. Dunlop, and M. Couper: Acta Mater., 1998, vol. 46, pp. 3893-04.

    Article  Google Scholar 

  2. M. Murayama, K. Hono, M. Saga, and M. Kikuchi: Mater. Sci. Eng. A, 1998, vol. 250, pp. 127-32.

    Article  Google Scholar 

  3. I. Dutta, and S.M. Allen: J. Mater. Sci. Lett., 1991, vol. 10, pp. 323-26.

    Article  Google Scholar 

  4. W.F. Miao and D.E. Laughlin: Scripta Mater., 1999, vol. 40, pp. 873-78.

    Article  Google Scholar 

  5. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2001, vol. 49, pp. 321–28.

    Article  Google Scholar 

  6. J.S. Langer and A.J. Schwartz: Physical Review A, The American Physical Society, 1980, vol. 21, pp. 948-958.

    Article  Google Scholar 

  7. R. Kampmann, H. Eckerlebe, and R. Wagner: Mat. Res. Soc. Symp. Proc., MRS, 1987, vol. 57, pp. 525–42.

  8. R. Wagner and R. Kampmann: Material Science and Technology—A Comprehensive Treatment, vol. 5, VCH, 1991, pp. 213–303.

  9. A. Bahrami, A. Miroux, and J. Sietsma: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4445-53.

    Article  Google Scholar 

  10. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C. R. Hutchinson, D. Maisonnette, T. Chaise, J. Gamier, and F. Bourlier: Acta Mater., 2014, vol. 62, pp. 129-140.

    Article  Google Scholar 

  11. Q. Du, B. Holmedal, J. Friis, and C. Marioara: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 589-599.

    Article  Google Scholar 

  12. Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, and R. Holmestad: Acta Mater., 2017, vol. 122, pp. 178-186.

    Article  Google Scholar 

  13. M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008, vol. 56, pp. 2119-32.

    Article  Google Scholar 

  14. Q. Du, Y. Li: Acta Mater. 2014, vol. 71, pp. 380-389.

    Article  Google Scholar 

  15. P. Maugis, M. Goune: Acta Mater. 2005, vol. 53, pp. 3359-67.

    Article  Google Scholar 

  16. Q. Du, W.J. Poole, M.A. Wells: Acta Mater., 2012, vol. 60, pp. 3830-39.

    Article  Google Scholar 

  17. Q. Chen, J. Jeppsson, J. Ågren: Acta Mater., 2008, vol. 56, pp. 1890-96.

    Article  Google Scholar 

  18. E. Kozeschnik, I. Holzer, B. Sonderegger: J. Phase Equilibria Diffusion, 2007, vol. 28, pp. 64-71.

    Article  Google Scholar 

  19. A. Deschamps and Y. Bréchet: Acta Mater. 1999, vol. 47, pp. 293-305.

    Article  Google Scholar 

  20. O.R. Myhr, Ø. Grong, and S.J. Andersen: Acta Mater., 2001, vol. 49, pp. 65-75.

    Article  Google Scholar 

  21. L.M Cheng, W.J. Poole, J.D. Embury, and D.J. Lloyd: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2473-81.

    Article  Google Scholar 

  22. W.J. Poole and D.J. Lloyd: Proc. 9th Int. Conf. on Aluminium Alloys, Institute of Materials Engineering Australasia Ltd, 2004, pp. 939–44.

  23. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76-85.

    Article  Google Scholar 

  24. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-75.

    Article  Google Scholar 

  25. Y. Estrin: in Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, New York, NY, 1996, pp. 69–106.

  26. Y. Estrin: J. of Mater. Proc. Technol., 1998, vols. 80-81, pp. 33-39.

    Article  Google Scholar 

  27. H. J. Frost, and M. F. Ashby: Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, Oxford (England), Pergamon Press, 1982.

    Google Scholar 

  28. A.G. Evans and R.D. Rawlings: Phys. Stat. Sol., 1969, vol. 34, pp. 9-31.

    Article  Google Scholar 

  29. Y. Bergström, H. Hallén: Mater. Sci. Eng., 1982, vol. 55, pp. 49-61.

    Article  Google Scholar 

  30. A.H. van den Boogaard and J. Huétink: Comput. Methods Appl. Mech. Engrg., 2006, vol. 195, pp. 6691-6709.

    Article  Google Scholar 

  31. O.R. Myhr, Ø. Grong and C. Schäfer: Metall. Mater. Trans A, 2015, vol. 46A, pp. 6018-39.

    Article  Google Scholar 

  32. O.R. Myhr, Ø. Grong, and K.O. Pedersen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2276-89.

    Article  Google Scholar 

  33. O.R. Myhr, and Ø. Grong: Acta Mater., 2000, vol. 48, pp. 1605-15.

    Article  Google Scholar 

  34. O.R. Myhr and Ø. Grong: ASM Handbook, Welding Fundamentals and Processes, ASM, vol. 6A, 2011, pp. 797–18.

  35. O.R. Myhr, Ø. Grong, H.G. Fjær and C.D. Marioara: Acta Mater., 2004, vol. 52, pp. 4997-08.

    Article  Google Scholar 

  36. J.K. Holmen, T. Børvik, O.R. Myhr, H.G. Fjær, O.S. Hopperstad: International Journal of Impact Engineering, 2015, vol. 84, pp. 96-107.

    Article  Google Scholar 

  37. J. Johnsen, J.K. Holmen, O.R. Myhr, O.S. Hopperstad, T. Børvik: Comp. Mat. S., 2013, vol. 79, pp. 724-735.

    Article  Google Scholar 

  38. C. Dørum, O.G. Lademo, O.R. Myhr, T. Berstad, O.S. Hopperstad: Computers & Structures, 2010, vol. 88, pp. 519–528.

    Article  Google Scholar 

  39. A.J.E. Foreman and M.J. Makin: Phil. Mag., 1966, vol. 14, pp. 911-924.

    Article  Google Scholar 

  40. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals. A. Kelly and R.B. Nicholson, eds., Applied Science Publishers Ltd., Academic Press, London, 1971, pp. 9–135.

  41. A.J. Ardell: Metall. Mater. Trans. A, 1985, vol. 61A, pp. 2131-65.

    Article  Google Scholar 

  42. U.F. Kocks: Phil.Mag., 1966, vol. 13, pp. 541-66.

    Article  Google Scholar 

  43. A. Rusinek, J.A. Rodríguez-Martínez: Materials & Design, 2009, vol. 30, pp. 4377-90.

    Article  Google Scholar 

  44. K. Teichmann, C.D. Marioara, S.J. Andersen, and K. Martinsen: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4006-14.

    Article  Google Scholar 

  45. K. Teichmann, C.D. Marioara, S.J. Andersen, and K. Martinsen: Materials Characterization, 2013, vol. 75, pp. 1-7.

    Article  Google Scholar 

  46. F. Fazeli, C.W. Sinclair, and T. Bastow: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2297-2305.

    Article  Google Scholar 

  47. M. F. Ashby (1970) Phil. Mag. J., vol. 21, pp. 399-424.

    Article  Google Scholar 

  48. S. Gouttebroze, A. Mo, Ø. Grong, K.O. Pederesen and H.G. Fjær: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 522-534.

    Article  Google Scholar 

  49. V. Vilamosa, A.H. Clausen, T. Børvik, S.R. Skjervold, O.S. Hopperstad: Int. Journal of Impact Engineering, 2015, vol. 86, pp. 223-239.

    Article  Google Scholar 

  50. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and Kinetics of Slip, Progress in Materials Science, vol.19, Pergamon, Oxford (England), 1975.

    Google Scholar 

  51. V. Vilamosa, A.H. Clausen, T. Børvik, B. Holmedal, O.S. Hopperstad: Materials & Design, 2016, vol. 103, pp. 391-405.

    Article  Google Scholar 

  52. V. Vilamosa, A.H. Clausen, E. Fagerholt, O.S. Hopperstad and T. Børvik: Strain, 2014, vol. 50, pp. 223-235.

    Article  Google Scholar 

  53. V. Vilamosa: Doctoral Thesis, Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, 2015.

  54. H.G. Fjær, B.I. Bjørneklett, and O.R. Myhr: Proc. TMS Annual Meeting, San Francisco, CA, Feb. 2005, TMS, Warrendale, PA, 2005, pp. 95–100.

Download references

Acknowledgments

The authors gratefully appreciate the financial support from NTNU and the Research Council of Norway through the FRINATEK Program, Project No. 250553 (FractAl), and the Centre for Advanced Structural Analysis, Project No. 237885 (CASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Runar Myhr.

Additional information

Manuscript submitted December 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myhr, O.R., Hopperstad, O.S. & Børvik, T. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature. Metall Mater Trans A 49, 3592–3609 (2018). https://doi.org/10.1007/s11661-018-4675-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4675-3

Navigation