Skip to main content
Log in

A Combined Precipitation, Yield Strength, and Work Hardening Model for Al-Mg-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present article, a new two-internal-variable model for the work hardening behavior of commercial Al-Mg-Si alloys at room temperature is presented, which is linked to the previously developed precipitation and yield strength models for the same class of alloys. As a starting point, the total dislocation density is taken equal to the sum of the statistically stored and the geometrically necessary dislocations, using the latter parameters as the independent internal variables of the system. Classic dislocation theory is then used to capture the overall stress-strain response. In a calibrated form, the work hardening model relies solely on outputs from the precipitation model and thus exhibits a high degree of predictive power. In addition to the solute content, which determines the rate of dynamic recovery, the two other microstructure parameters that control the work hardening behavior are the geometric slip distance and the corresponding volume fraction of nonshearable Orowan particles in the base material. Both parameters are extracted from the predicted particle size distribution. The applicability of the combined model is illustrated by means of novel process diagrams, which show the interplay between the different variables that contribute to work hardening in commercial Al-Mg-Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.W. Pashley, M.H. Jacobs, and J.T. Vietz: Phil. Mag., 1967, vol. 16, pp. 51–76.

    Article  CAS  ADS  Google Scholar 

  2. M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537–48.

    Article  CAS  Google Scholar 

  3. D. Altenpohl: Aluminium und Aluminiumlegierungen, Springer-Verlag, Berlin, 1965, pp. 762–67.

    Google Scholar 

  4. S. Esmaeili, D.J. Lloyd, and W.J. Poole: Acta Mater., 2003, vol. 51, pp. 3467–81.

    Article  CAS  Google Scholar 

  5. S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 751–63.

    CAS  ADS  Google Scholar 

  6. X. Wang, W.J. Poole, S. Esmaeili, D.J. Lloyd, and J.D. Embury: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2913–23.

    Article  CAS  ADS  Google Scholar 

  7. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2001, vol. 49, pp. 321–28.

    Article  CAS  Google Scholar 

  8. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2003, vol. 51, pp. 789–96.

    Article  CAS  Google Scholar 

  9. W.J. Poole, W.J. Wang, D.J. Lloyd, and J.D. Embury: Phil. Mag., 2005, vol. 85, pp. 3113–35.

    Article  CAS  ADS  Google Scholar 

  10. L.M Cheng, W.J. Poole, J.D. Embury, and D.J. Lloyd: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2473–81.

    Article  CAS  Google Scholar 

  11. E. Hornbogen and K.-H.Z. Gahr: Metallography, 1975, vol. 8, pp. 181–202.

    Article  CAS  Google Scholar 

  12. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424

    Article  CAS  ADS  Google Scholar 

  13. M.F. Ashby: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., John Wiley & Sons, New York, NY, 1971, pp. 137–92.

    Google Scholar 

  14. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1185–99.

    Article  CAS  ADS  Google Scholar 

  15. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1201–33.

    Article  CAS  ADS  Google Scholar 

  16. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., John Wiley & Sons, New York, NY, 1971, pp. 12–135.

    Google Scholar 

  17. E.W. Hart: Acta Metall., 1972, vol. 20, pp. 275–89.

    Article  CAS  Google Scholar 

  18. J.D. Atkinson, L.M. Brown, and W.M. Stobbs: Phil. Mag., 1974, vol. 30, pp. 1247–80.

    Article  CAS  ADS  Google Scholar 

  19. G.D. Moan and J.D. Embury: Acta Metall., 1979, vol. 27, pp. 903–14.

    Article  CAS  Google Scholar 

  20. H. Proudhon, W.J. Poole, X. Wang, and Y. Bréchet: Phil. Mag., 2008, vol. 88, pp. 621–40.

    Article  CAS  ADS  Google Scholar 

  21. Y. Estrin: in Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, New York, NY, 1996, pp. 69–106.

    Chapter  Google Scholar 

  22. Y. Estrin: J. Mater. Proc. Technol., 1998, vols. 80–81, pp. 33–39.

    Article  Google Scholar 

  23. W.J. Poole and D.J. Lloyd: Proc. 9th Int. Conf. on Aluminium Alloys, Institute of Materials Engineering Australasia Ltd., 2004, pp. 939–44.

  24. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  25. H. Meckling and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  Google Scholar 

  26. O.R. Myhr and Ø. Grong: Acta Mater., 2000, vol. 48, pp. 1605–15.

    Article  CAS  Google Scholar 

  27. O.R. Myhr, Ø. Grong, and S.J. Andersen: Acta Mater., 2001, vol. 49, pp. 65–75.

    Article  CAS  Google Scholar 

  28. O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Mariorara: Acta Mater., 2004, vol. 52, pp. 4997–08.

    Article  CAS  Google Scholar 

  29. S. Gouttebroze, A. Mo, Ø. Grong, K.O. Pedersen, and H.G. Fjær: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 522–34.

    Article  CAS  ADS  Google Scholar 

  30. O.R. Myhr, Ø. Grong, O.G. Lademo, and T. Tryland: Weld. J., 2009, vol. 88 (2), pp. 42–45.

    Google Scholar 

  31. A.J. Foreman and M.J. Makin: Phil. Mag., 1966, vol. 14, pp. 911–24.

    Article  CAS  ADS  Google Scholar 

  32. K.C. Russel, Phase Transformations, ASM, Metals Park, OH, 1970, pp. 219–68.

    Google Scholar 

  33. H.B. Aaron, D. Fainstain, and G.R. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10.

    Article  ADS  Google Scholar 

  34. J. Friedel: Dislocations, Pergamon Press, Oxford, United Kingdom, 1964, pp. 119–360.

    MATH  Google Scholar 

  35. A. Deschamps and Y. Bréchet: Acta Mater., 1999, vol. 47, pp. 293–305.

    Article  CAS  Google Scholar 

  36. M.F. Ashby and D.R.H. Jones: Engineering Materials—An Introduction to Their Properties and Applications, Pergamon Press, Oxford, United Kingdom, 1980, pp. 97–102.

    Google Scholar 

  37. K.I. Aastorp: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2002.

  38. K.O. Pedersen, O.G. Lademo, T. Berstad, T. Furu, and O.S. Hopperstad: J. Mater. Process. Technol., 2008, vol. 20, pp. 77–93.

    Article  Google Scholar 

  39. J. Friis, B. Holmedal, Ø. Ryen, E. Nes, O.R. Myhr, Ø. Grong, T. Furu, and K. Martinsen: Proc. 10th Int. Conf. on Aluminium Alloys, Materials Science Forum, 2006, vols. 519–521, pp. 1901–06.

  40. Ø. Ryen: “Work Hardening of Al-Mg-Si Alloys—Mechanical Properties,” DMSE Report, Norwegian University of Science and Technology, Trondheim, Norway, 2005.

  41. O.D. Sherby, R.A. Anderson, and J.E. Dorn: J. Met., 1951, vol. 3, pp. 643–52.

    CAS  Google Scholar 

  42. Ø. Ryen: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2003.

  43. E. Nes, K. Martinsen, and B. Rønning: J. Mater. Process. Technol., 2001, vol. 117, pp. 333–40.

    Article  CAS  Google Scholar 

  44. G.E. Dieter: Mechanical Metallurgy, 2nd Ed., McGraw-Hill Book Company, New York, NY, 1976, pp. 337–43.

    Google Scholar 

  45. O.R. Myhr, S. Klokkehaug, Ø. Grong, H.G. Fjær, and A.O. Kluken: Weld. J., 1998, vol. 77, pp. 286–92.

    Google Scholar 

  46. O.R. Myhr, H.G. Fjær, S. Klokkehaug, E.J. Holm, Ø. Grong, and A.O. Kluken: Proc. 9th Int. Conf. on Computer Technology in Welding, National Institute of Standards and Technology Special Publication 949, U.S. Government Printing Office, Washington, DC, 2000, pp. 52–63.

  47. O.R. Myhr and Ø. Grong: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 621–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Norwegian Research Council and Hydro Aluminium through SIMLab, the Centre for Research-Based Innovation, at the Norwegian University of Science and Technology. Moreover, they are grateful to Dr. Øyvind Ryen for providing the experimental tensile and compression test data used to calibrate and validate the work hardening model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Runar Myhr.

Additional information

Manuscript submitted June 16, 2009.

Appendix

Appendix

1.1 Symbols and units

A 0 :

parameter related to the energy barrier for nucleation (J/mol)

b :

magnitude of the Burgers vector (m)

\( \overline{C} \) :

mean solute concentration in matrix (wt pct)

C 0 :

nominal solute concentration in matrix (wt pct)

C e :

equilibrium solute concentration at the particle/matrix interface (wt pct)

\( C_{\text{eff}}^{\text{Si}} \) :

effective silicon content in alloy (wt pct)

C i :

solute concentration at the particle/matrix interface (wt pct)

C Mg :

solute concentration of magnesium in matrix (wt pct)

\( \hat{C}_{\text{Mg}} \) :

equivalent magnesium concentration (wt pct)

\( \hat{C}_{\text{Mg}}^{\text{ref}} \) :

value of \( \hat{C}_{\text{Mg}} \) in reference alloy (wt pct)

C p :

concentration of alloying element inside the particle (wt pct)

D :

diffusion coefficient (m2/s)

f :

particle volume fraction

f o :

volume fraction of nonshearable Orowan particles

\( f_{o}^{\text{ref}} \) :

value of f o in reference alloy

G :

shear modulus (N/m2)

j :

nucleation rate (#/m3s)

j 0 :

pre-exponential term in expression for j (#/m3s)

k 1 :

parameter related to statistical storage of dislocations (m−1)

k 2 :

parameter related to dynamic recovery of dislocations

\( k_{2}^{\text{ref}} \) :

value of k 2 in reference alloy

k 3 :

parameter determining the solute dependence of k 2 (N/m2 wt pct3/4)

ℓ:

mean planar particle spacing along the bending dislocation (m)

M :

Taylor factor

N i :

number of particles per unit volume within the size class r i (#/m3)

Q d :

activation energy for diffusion (J/mol)

R :

universal gas constant (8.314 J/Kmol)

r :

particle radius (m)

r i :

particle radius within size class i (m)

r c :

critical particle radius for the transition from shearing to bypassing (m)

r o :

particle radius of nonshearable Orowan particles (m)

t :

time (s)

T :

temperature (K or °C)

T p :

peak temperature (K or °C)

α :

constant in expression for Δσ d

Δσ d :

net contribution from dislocation hardening to flow stress (N/m2)

Δσ d,s :

value of Δσ d at saturation (N/m2)

\( \Updelta \sigma_{d,s}^{ref} \) :

value of Δσ d,s in reference alloy (N/m2)

Δ :

plate thickness (m)

ɛ :

tensile strain

ɛ c :

critical strain at which ρ g saturates

\( \varepsilon_{c}^{\text{ref}} \) :

value of ɛ c in reference alloy

ɛ p :

plastic tensile strain

ɛ u :

true uniform plastic strain

γ :

shear strain

γ ref :

value of γ in reference alloy

λ g :

geometric slip distance (m)

λ g,o :

geometric slip distance of Orowan particles (m)

\( \lambda_{g,o}^{ref} \) :

value of λ g,o in reference alloy (m)

λ s :

slip distance for statistical storage of dislocations (m)

ρ g :

number density of geometrically necessary dislocations (m−2)

\( \rho_{g}^{\text{ref}} \) :

value of ρ g in reference alloy (m−2)

ρ g,s :

value of ρ g at saturation (m−2)

\( \rho_{g,s}^{\text{ref}} \) :

value of ρ g,s in reference alloy (m−2)

ρ s :

number density of the statistically stored dislocations (m−2)

ρ s,s :

value of ρ s at saturation (m−2)

ρ t :

total dislocation density (m−2)

ρ t,s :

value of ρ t at saturation (m−2)

σ :

flow stress (N/m2)

σ i :

intrinsic yield strength of pure aluminum (N/m2)

σ p :

contribution from hardening precipitates to the overall macroscopic yield strength (N/m2)

σ ss :

contribution from alloying elements in solid solution to the overall macroscopic yield strength (N/m2)

σ sat :

value of σ at saturation (N/m2)

σ y :

overall macroscopic yield strength (N/m2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myhr, O.R., Grong, Ø. & Pedersen, K.O. A Combined Precipitation, Yield Strength, and Work Hardening Model for Al-Mg-Si Alloys. Metall Mater Trans A 41, 2276–2289 (2010). https://doi.org/10.1007/s11661-010-0258-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0258-7

Keywords

Navigation