Skip to main content
Log in

Improvement of Superplasticity in High-Mg Aluminum Alloys by Sacrifice of Some Room Temperature Formability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.T. Thomas: Acta Metall., 1966, vol. 14, pp. 1363-1374.

    Article  Google Scholar 

  2. D.J. Lloyd: Metall. Trans., 1980, vol. 11A, pp. 1287-1294.

    Article  Google Scholar 

  3. J.L. Searles, P.I. Gouma and R.G. Buchheit: Metall. Mater. Trans., 2001, vol. 32A, pp. 2859-2867.

    Article  Google Scholar 

  4. Ø. Ryen, O. Nijs, E. Sjölander, B. Holmerdal, H-E. Ekström and E. Nes: Metall. Mater. Trans., 2006, vol. 37A, pp. 1999-2006.

    Article  Google Scholar 

  5. K. Kannan, J.S. Vetrano and C.H. Hamilton: Metall. Mater. Trans., 1996, vol. 27A, pp. 2947-2957.

    Article  Google Scholar 

  6. J.S. Vetrano, C.A. Lavender, C.H. Hamilton, M.T. Smith and S.M. Bruemmer: Script. Metall. Mater., 1994, vol. 30, pp. 565-570.

    Article  Google Scholar 

  7. Y. Takayama, S. Sasaki, T. Tozawa, H. Kato, H. Watanabe and M. Kokubo: J. Jpn. Inst. Light Met., 1999, vol. 49, pp. 378-382.

    Article  Google Scholar 

  8. D.H. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 48, pp. 1207-1224.

    Article  Google Scholar 

  9. R.M. Cleveland, A.K. Ghosh and J.R. Bradley: Metall. Mater. Trans., 2003, vol. 34A, pp. 228-236.

    Google Scholar 

  10. M-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski and T.R. McNelley: Metall. Mater. Trans., 2005, vol. 36A, pp. 1249-1261.

    Article  Google Scholar 

  11. L.D. Hefti: J. Mater. Eng. Perf., 2007, vol. 16, pp. 136-141.

    Article  Google Scholar 

  12. R. Grimes, M.J. Stowell and B.M. Watts: Metals Technol., 1976, vol. 3, pp. 154-160.

    Article  Google Scholar 

  13. J. Pilling and N. Ridley: Superplasticity in Crystalline Solids, Institute of Metals, London, 1989, pp. 159-195.

    Google Scholar 

  14. A.J. Barnes, M.J. Stowell, R. Grimes, D.B. Laycock and B.M. Watts: Key Eng. Mater., 2010, vol. 433, pp. 11-30.

    Article  Google Scholar 

  15. R. Kaibyshev, E. Avtokratova, A. Apollonov and R. Davies: Script. Mater., 2006, vol. 54, pp. 2119-2124.

    Article  Google Scholar 

  16. A. Smolej, B. Skaza, B. Markoli, D. Klobčar, V. Dragojević and E. Slaček: Mater. Sci. Forum, 2012, vol. 706-709, pp. 395-401.

    Article  Google Scholar 

  17. J.A. Wert, N.E. Paton, C.H. Hamilton and M.W. Mahoney: Metall. Trans., 1981, vol. 12A, pp. 1267-1276.

    Article  Google Scholar 

  18. N. E. Paton, C.H. Hamilton, J. A. Wert and M.W. Mahoney: J. Metals, 1982, vol. 34, pp. 21-27.

    Google Scholar 

  19. M.W. Mahoney and A.K. Ghosh: Metall. Trans., 1987, vol. 18, pp. 653-661.

    Article  Google Scholar 

  20. T.R. Bieler, R.S. Mishra and A.K. Mukherjee: JOM, 1996, vol. 48, pp. 52-57.

    Article  Google Scholar 

  21. D.L. Holt and W.A. Backofen: Trans. ASM, 1966, vol. 59, pp. 755-768.

    Google Scholar 

  22. G. Rai and N.J. Grant: Metall. Trans., 1975, vol. 6A, pp. 385-390.

    Article  Google Scholar 

  23. R.Z. Valiev and T.G. Langdon: Metall. Mater. Trans., 2011, vol. 42A, pp. 2942-2951.

    Article  Google Scholar 

  24. T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035-7059.

    Article  Google Scholar 

  25. H. Jin: Mater. Sci. Tech., 2017, in press.

  26. N. Hansen: Mem. Sci. Rev. Met., 1975, vol. 72, pp. 189-203.

    Google Scholar 

  27. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323-1344.

    Article  Google Scholar 

  28. C.S. Smith: Trans. Metall. Soc. AIME, 175 (1948) 15-51.

    Google Scholar 

  29. W. Rosenhain and D. Ewen: J. Inst. Metals, 1913, vol. 10, pp. 119-139.

    Google Scholar 

  30. Z. Jeffries: Trans. Ame. Inst. Mining. Metal. Eng., 1919, vol. 60, pp. 474-576.

    Google Scholar 

  31. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995.

    Google Scholar 

  32. M.F. Ashby: Phil. Mag., 1966, vol. 14, pp. 1157-1178.

    Article  Google Scholar 

  33. K. Tanaka, T. Mori and T. Nakamura: Phil. Mag., 1970, vol. 21, pp. 267-279.

    Article  Google Scholar 

  34. J.D. Atkinson: Fatigue and the Bauschinger Effect in Dispersion-hardened Copper Single Crystals, Ph.D. Thesis, University of Cambridge, 1973.

  35. M.J. Stowell: Met. Sci., 1983, vol. 17, pp. 1-11.

    Article  Google Scholar 

  36. H.J. Frost: Deformation Mechanism Maps, Ph.D. Thesis, Harvard University, 1974, pp. 132.

  37. M.J. Stowell: Superplastic Forming of Structural Alloys, TMS-AIME, Warrendale, PA, 1982, pp. 321-336.

    Google Scholar 

  38. R.C. Gifkins: Metall. Trans., 1976, vol. 7A, pp. 1225-1232.

    Article  Google Scholar 

  39. [39] M.F. Ashby and R.A. Verrall: Acta Metall., 1973, vol. 21, pp. 149-163.

    Article  Google Scholar 

  40. T.G. Langdon: J. Mater. Sci., 2006, vol. 41, pp. 597-609.

    Article  Google Scholar 

  41. J-K. Chang, E.M. Taleff and P.E. Krajewski: Metall. Mater. Trans., 2009, vol. 40A, pp. 3128-3137.

    Article  Google Scholar 

  42. J.A. Wert: JOM, 1982, vol. 34, pp. 35-41.

    Article  Google Scholar 

Download references

Acknowledgment

The present work was supported by Natural Resources Canada and Transport Canada through P-001969.001. Mrs. C. Bibby is appreciated for TEM specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jin.

Additional information

Manuscript submitted July 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Amirkhiz, B.S. & Lloyd, D.J. Improvement of Superplasticity in High-Mg Aluminum Alloys by Sacrifice of Some Room Temperature Formability. Metall Mater Trans A 49, 1962–1979 (2018). https://doi.org/10.1007/s11661-018-4546-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4546-y

Navigation