Skip to main content
Log in

Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength–ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength–ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength–ductility maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhu, A. Kamiya, T. Yamada, W. Shi, K. Naganuma: Mater. Sci. Eng. A, 2003, vol. 339, pp.53–62.

    Article  Google Scholar 

  2. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle: Scr. Mater., 2005, vol. 53, pp. 1421–26.

    Article  Google Scholar 

  3. A.D. Hartman, S.J. Gerdemann: JOM, 1998, vol. 5, pp. 16–19.

    Article  Google Scholar 

  4. J.D. Cotton, R.D. Boyer, G.R. Weber, K.T. Slattery: Titanium Alloy Development Needs for Commercial Air Frame, Technical Fellow Washington, USA, 2008.

  5. V.C. Petersen, V.K. Chandhok, C.A. Kelto: in Powder Metall. Titan. Alloy., F.H. Froes, J.E. Smugeresky, eds., A.I.M.E, Warrendale, PA, 1980, pp. 243–54.

  6. W. Kroll: Z Met., 1937, vol. 29, pp.189–192.

    Google Scholar 

  7. S. Abkowitz, G.J. Kardys, S. Fujishiro, F.H. Froes, D. Eylon: in Titan. Net Shape Technol., D. Eylon, F.H. Froes, eds., The Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 107–20.

  8. S. Abkowitz and D. Rowell: JOM, 1986, vol 38, pp. 36–39.

    Article  Google Scholar 

  9. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, V.A. Duz: JOM, 2004, vol. 56, pp. 46–48.

    Article  Google Scholar 

  10. F.H. Froes and C. Suryanarayana: Rev. Part. Mater., 1993, vol. 1, pp 223–275.

    Google Scholar 

  11. F.H. Froes and D. Eylon: Int. Mater. Rev., 1990, vol. 35, pp. 162–184.

    Article  Google Scholar 

  12. F.H. Froes and J.E. Smugeresky, eds.: Titanium Powder Metallurgy, in: Symp. AIME Annu. Meet., The Metall. Soc. of AIME, Las Vegas, Nevada, 1980.

  13. I.S. Polkin and V.N. Samarov: Titanium 2011, Science and Technology, Proceedings of the 12th International Conference on Titanium, TMS, Beijing, China, 2011, pp. 1817–20.

  14. J. Park, M.W. Toaz, D.H. Ro, E.N. Aqua: in Blended Elemental Powder Metallurgy of Titanium Alloys, F.H. Froes, D. Eylon, eds., Titan. Net Shape Technol., The Metall. Soc. of AIME, Warrendale, PA, 1984, pp. 95–105.

  15. C.F. Yolton and F.H. Froes: in Conventional Titanium Powder Production, M.A. Qian, F.H. Froes, eds., Titan. Powder Metall., Elsevier Ltd, 2015, pp. 21–32.

  16. F.H. Froes, D. Eylon, G.E. Eichelman, H.M. Burte: JOM, 2014, vol. 32, pp. 47–54.

    Article  Google Scholar 

  17. F.H. Froes and D. Eylon: in Titanium Powder Metallurgy—A Review, D. Eylon, F.H. Froes, eds., Titan. Net Shape Technol., The Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 1–20.

  18. F.H. Froes and D. Eylon: MPR Publ., 1984, vol. 1, pp.1–19.

    Google Scholar 

  19. F.H. Froes, H.B. Bomberger, D. Eylon, R.G. Rowe: in Potential of Titanium Powder Metallurgy, R.J. Cunningham, M. Schwartz eds., Compet. Adv. Met. Process., Society for the Advancement of Material and Process Engineering, Covina, CA, 1987, pp. 240–54.

  20. M. Ashraf Imam and F.H.S. Froes: JOM, 2016, vol. 62, pp. 17–20.

  21. M. Qian: Int. J. Powder Metall., 2011, vol. 46, pp. 29–44.

    Google Scholar 

  22. I.M. Robertson and G.B. Schaffer: Powder Metall., 2010. vol. 53, pp. 146–162.

    Article  Google Scholar 

  23. O.M. Ivasishin, D.G. Savvakin, V.A. Duz, M.V. Matviychuk, V.S. Moxson: Extra Low Impurity Content Powder Metallurgy Titanium and Titanium Alloys, in: Titanium 2012, International Titanium Association (ITA), Hilton, Atlanta, 2012.

  24. C.Z. Yu and M.I. Jones: Powder Metall., 2013, vol. 56, pp. 304–09.

    Article  Google Scholar 

  25. Z. Fan, H.J. Niu, B. Cantor, A.P. Miodownik, T. Saito: J. Microsc., 1997, vol. 185, pp. 157–67.

  26. M. Kumagai, K. Shibue, M.-S. Kim, M. Yonemitsu: Intermetallics., 1996, vol. 4, pp. 557–566.

    Article  Google Scholar 

  27. K. Majima, T. Hirata, K. Shouji: J. Jpn. Inst. Met., 1987, vol. 51, pp. 1194–1200.

    Google Scholar 

  28. S. Abkowitz, S.M. Abkowitz, H. Fisher: in Titanium Alloy Components Manufacture from Blended Elemental Powder and the Qualification process, M. Qian, F.H. Froes, eds., Titan. Powder Metall., 2015, pp. 299–312.

  29. M. Yan, H.P. Tang, M. Qian: in Scavenging of Oxygen and Chlorine from Powder Metallurgy (PM) Titanium and Titanium Alloys, Q.M., F.H. Froes, eds., Titan. Powder Metall., 2015, pp. 253–76.

  30. S.M. El-Soudani: in Powder-Based Titanium Alloys: Properties and Selection, M. Qian, F.. Froes, eds., Titan. Powder Metall., 2015: pp. 469–96.

  31. F.H. Froes: Met. Powder Rep., 1987, vol. 42, pp. 217–18.

    Google Scholar 

  32. P.J. Andersen, V.M. Svoyatytsky, F.H. Froes, Y. Mahajan, D. Eylon: Mod. Dev. Powder Metall., 1981, vol. 13, pp. 537–49.

    Google Scholar 

  33. Y.T. Lee, M. Peters, G. Wirth: Mater. Sci. Eng. A, 1988, vol. 102, pp. 105–14.

    Article  Google Scholar 

  34. D. Eylon, R.G. Vogt, F.H. Froes: Prog. Powder Metall., 1986, vol. 42, pp. 625–34.

    Google Scholar 

  35. E. Gregory: Fabrication of Niobium Superconductor Alloys, U.S. Patent 3472705, 1969.

  36. J. Greenspan, F.J. Rizzitano, E. Scala: Metal Matrix Composites by Decomposition Sintering of Titanium Hydride, Army materials and mechanics Research Center, Watertown, MA, 1970.

    Google Scholar 

  37. K. Obara, Y. Nishino, S. Matsumoto: Process for Producing a Sintered Article of a Titanium Alloy, U.S. Patent 4219357, 1976.

  38. D.H. Savvakin, M.M. Humenyak, M. V Matviichuk: Mater. Sci., 2012, vol. 47, pp. 651–61.

    Article  Google Scholar 

  39. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak: Key Eng. Mater., 2012, vol. 520, pp. 121–32.

    Article  Google Scholar 

  40. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, D.G. Savvakin: Key Eng. Mater., 2000, vol. 188, pp. 55–62.

    Article  Google Scholar 

  41. O.M. Ivasishin, D.G. Savvakin, F.H. Froes, V.S. Mokson, K. Bondareva:Poroshkovaya Metall., 2000, vol. 7, pp. 54–64.

    Google Scholar 

  42. O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, C. Lavender: in BEPM Synthesis of Ti-6Al-4V Alloy Using Hydrogenated Titanium, Eur. Congr. Exhib. Powder Metall. Eur. PM Conf. Proc., The European Powder Metallurgy Association, 2005, pp. 115–20.

  43. H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, Q. Zha: Key Eng. Mater., 2010, vol. 436, pp. 157–63.

    Article  Google Scholar 

  44. P. Sun: PhD thesis, Powder Metallurgy Titanium by the Hydrogen Sintering and Phase Transformation (HSPT) Process, University of Utah, 2015.

  45. P. Sun, Z.Z. Fang, M. Koopman, Y. Xia, J. Paramore, K.S.R. Chandran, Y. Ren, J. Lu: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5546–5560.

    Article  Google Scholar 

  46. Z.Z. Fang, P. Sun, H. Wang:, Adv. Eng. Mater., 2012, vol.14, pp. 383–387.

    Article  Google Scholar 

  47. P. Sun, Z.Z. Fang, M. Koopman: Adv. Eng. Mater., 2013, vol. 15, pp. 1007–13.

    Google Scholar 

  48. F. Cao, K.S. Ravi Chandran, P. Kumar, P. Sun, Z. Zak Fang, M. Koopman: Metall. Mater. Trans. A., 2016, vol. 47, pp. 2335–2345.

    Article  Google Scholar 

  49. F. Cao and K.S. Ravi Chandran: JOM, 2016, vol. 68, pp. 735–746.

    Article  Google Scholar 

  50. V. Moxson, O.N. Senkov, F.H. Froes: JOM, 2000, vol. 52, pp. 24–26.

    Article  Google Scholar 

  51. J.C. Withers: in Production of Titanium Powder by an Electrolytic Method and Compaction of the Powder, M. Qian, F.H. Froes, eds., Titan. Powder Metall: Sci. Technol. Appl., Butterworth-Heinemann, 2015: pp. 33–49.

  52. Y.F. Yang, S.D. Luo, G.B. Schaffer: Mater. Sci. Eng. A, 2013, vol. 573, pp. 166–174.

    Article  Google Scholar 

  53. T. Fujita, A. Ogawa, C. Ouchi, H. Tajima: Mater. Sci. Eng. A., 1996, vol. 213, pp. 148–153.

    Article  Google Scholar 

  54. O.M. Ivasishin, A.N. Demidik, D.G. Savvakin: Powder Metall. Met. Ceram., 1999, vol. 38, pp. 482–487.

    Article  Google Scholar 

  55. O.M. Ivasishin, D.G. Savvakin, F.H. Froes, K.A. Bondareva: Metall. Met. Ceram., 2002, vol. 41, pp. 382–390.

    Article  Google Scholar 

  56. O.M. Ivasishin, D.G. Savvakin, F.H. Froes, V.S. Mokson, K.A. Bondareva: Poroškovaâ Metall., 2002 vol. 7, pp. 54–64.

    Google Scholar 

  57. O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, K. Bondareva: Mater. Technol., 2002, vol. 17, pp. 20–25.

    Article  Google Scholar 

  58. F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, K.S.R. Chandran: Mater. Sci. Eng. A, 2015, vol. 630, pp. 139–45.

    Article  Google Scholar 

  59. P. Kumar, K.S. Ravi Chandran, F. Cao, M. Koopman, Z.Z. Fang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2150-61.

    Article  Google Scholar 

  60. J.D. Paramore, Z. Zak Fang, P. Sun: in Hydrogen Sintering of Titanium and Its Alloys, Titanium Powder Metallurgy, Science, Technology and Application, 2015, pp. 163–182.

  61. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, M. Dunstan: Scr. Mater., 2015, vol. 107, pp. 103–106.

    Article  Google Scholar 

  62. Y. Yan, G.L. Nash, P. Nash: Int. J. Fatigue, 2013, vol. 55, pp. 81–91.

    Article  Google Scholar 

  63. Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, Y.-S. Kwon: J. Alloys Compd., 2014, vol. 603, pp. 207–212.

    Article  Google Scholar 

  64. D. Eylon, F.H. Froes, D.G. Heggie, P.A. Blenkinsop, R.W. Gardiner: Metall. Trans. A, 1983, vol. 14, pp. 2497–2505.

    Article  Google Scholar 

  65. L. Levin, R.G. Vogt, D. Eylon, F.H. Froes: Titanium–Science Technol., 1984, vol. 4, pp. 2107–2114.

    Google Scholar 

  66. I. Weiss, D. Eylon, M.W. Toaz, F.H. Froes: Metall. Trans. A, 1986, vol. 17, pp. 549–559.

    Article  Google Scholar 

  67. P.R. Smith, C.M. Cooke, A. Patel, F.H. Froes: Prog. Powder Met, 1983, vol. 38, pp. 339–359.

    Google Scholar 

  68. P.R. Smith, C.M. Cooke, F.H. Froes: in Evaluation of Blended Elemental Ti-6Al-4V Plate in Three Microstructural Conditions, Mater. Process. Contin. Innov., Society for the Advancement of Material and Process Engineering, Covina, CA, 1983, pp. 406–21.

  69. M. Hagiwara, Y. Kaieda, Y. Kawabe, S. Miura: ISIJ Int., 1991, vol. 31, pp. 922–930.

    Article  Google Scholar 

  70. V.S. Moxson, P. Sjoblom, M.J. Trzcinski: Adv. Powder Metall. Part. Mater., 1992, vol. 6, pp. 125–140.

    Google Scholar 

  71. C. Haase, R. Lapovok, H.P. Ng, Y. Estrin: Mater. Sci. Eng. A, 2012, vol. 550, pp. 263–272.

    Article  Google Scholar 

  72. G.I. Friedman: Int. J. Powder Metall., 1970, vol. 6, pp. 43–55.

    Google Scholar 

  73. Y. Mahajan, D. Eylon, R. Bacon, F.H. Froes: in Microstructure Property Correlation in Cold Pressed and Sintered Elemental Ti-6Al-4 V Powder Compacts, F.H. Froes, J.E. Smugeresky, eds., Powder Metall. Titan. Alloy., The Metall. Soc. of AIME, Warrendale, PA, 1980, pp. 189–202.

  74. G. Wirth, K.-J. Grundhoff, W. Smarsly: Overcoming Mater. Boundaries, 1985, vol. 17, pp.125–134.

    Google Scholar 

  75. A.A. Sheinker, G.R. Chanani, J.W. Bohlen: Int. J. Powder Metall., 1987, vol. 23, pp.171–176.

    Google Scholar 

  76. J.H. Moll and C.F. Yolton: in Review and Status of Titanium Materials Produced from Spherical Pre-alloyed Powder, Int. Powder Metall. Conf., The Metall. Soc. of AIME, Orlando, Fl, 1988, pp. 107–20.

  77. L. Xu, R. Guo, C. Bai, J. Lei, R. Yang: J. Mater. Sci. Technol., 2014, vol 30, pp. 1289–1295.

    Article  Google Scholar 

  78. R.E. Peebles and L.D. Parsons: in Study of Production Methods of Aerospace Quality Titanium Alloy Powder, F.H. Froes, D. Eylon, eds., Titan. Net Shape Technol., The Metall. Soc. of AIME, Warrendale, PA, 1984, pp. 21–28.

  79. K. Zhang, J. Mei, N. Wain, X. Wu: Metall. Mater. Trans. A, 2010, vol. 41, pp.1033–1045.

    Article  Google Scholar 

  80. D. Bozic, D. Sekulic, J. Stasic, V. Rajkovic, M.T. Jovanovic: Int. J. Mater. Res., 2008, vol. 99, pp. 1268–1274.

    Article  Google Scholar 

  81. W.H. Kao, D. Eylon, C.F. Yolton, F.H. Froes: Prog. Powder Met., 1981, vol. 37, pp. 289–301.

    Google Scholar 

  82. G. Abouelmagd, H.P. Büchkremer, E. El-Magd, D. Stöver: J. Mater. Process. Technol., 1993, vol. 37, pp. 583–597.

    Article  Google Scholar 

  83. J.P. Herteman, D. Eylon, F.H. Froes: Powder Met. Int., 1985, vol. 17, pp.116–118.

    Google Scholar 

  84. G. Welsch, R. Boyer, E.W. Collings, eds.: Materials Properties Handbook: Titanium Alloys, ASM international, 1993.

  85. D.J. Chronister, S.W. Scott, D.R. Stickle, D. Eylon, F.H. Froes: JOM, 1986, vol. 38, pp. 51–54.

    Article  Google Scholar 

  86. D. Eylon: Metall. Trans. A, 1976, vol. 7, pp. 111–121.

    Article  Google Scholar 

  87. R.G. Sherman and H.D. Kessler: Trans. ASM., 1956, vol. 48, pp. 657–676.

    Google Scholar 

  88. G.R. Yoder, L.A. Cooley, T.W. Crooker: Metall. Trans. A, 1977, vol. 8, pp.1737–1743.

    Article  Google Scholar 

  89. H. Margolin and Y. Mahajan: Metall. Trans. A, 1978, vol 9, pp.781–791.

    Article  Google Scholar 

  90. K. Bose, N.C. Birla, D.B. Goel: Trans. Indian Inst. Met., 1983, vol. 36, pp. 181–188.

    Google Scholar 

  91. J.C. Williams, E.A. Starke, , in Deformation, Processing, and Structure, G. Krauss ed., Metal Park, OH, ASM, 1984, pp. 301–49.

  92. Y. Itoh, T. Uematsu, K. Sato, H. Miura: J. Japan Soc. Powder Powder Metall, 2009, vol. 56, pp. 259–263.

    Article  Google Scholar 

  93. D.P. DeLo, R.E. Dutton, S.L. Semiatin, H.R. Piehler: Acta Mater., 1999, vol. 47, pp. 3159–3167.

    Article  Google Scholar 

  94. D.P. Delo and H.R. Piehler: Acta Mater., 1999, vol. 47, pp. 2841–2852.

    Article  Google Scholar 

  95. D.B. Dawson and M.G. Ulitchny: in Powder Metallurgy of Titanium Alloys, F.H. Froes, J.E. Smugeresky, eds., The Metallurgical Society of AIME, 1980, pp. 115–26.

  96. A. Gogia, D. Banerjee, N.C. Birla: Trans. Indian Inst. Met., 1983, vol. 36, pp. 200–07.

    Google Scholar 

  97. I. Weiss, F.H. Froes, D. Eylon, G.E. Welsch: Metall. Trans. A, 1986, vol. 17, pp. 1935–1947.

    Article  Google Scholar 

  98. I. Weiss, G.E. Welsch, F.H. Froes, D. Eylon: Recovery: in Strength of Metals and Alloys, Proceedings of the 7th International Conference, H.J. McQueen, J.-P. Bailon, J.I. Dickson, J.J. Jonas, M.G. Akben, eds., Pergamon Press, Montreal, Canada, 1986, pp. 1073–78.

  99. Y.R. Mahajan, D. Eylon, C. Kelto, T. Egerer, F.H. Froes: Powder metallurgy Intl., 1985, vol. 17, pp. 75-78.

    Google Scholar 

  100. [100] D. Eylon, C.A. Kelto, A.F. Hayes, F.H. Froes: Prog. Powder Metall., 1987, vol. 43, pp. 33–47.

    Google Scholar 

  101. [101] F.H. Froes, D. Eylon, G. Wirth, K.J. Grundhoff, W. Smarsly: Prog. Powder Metall., 1983, vol. 38, pp.36–41.

    Google Scholar 

  102. D. Eylon, P.R. Smith, S.W. Schwenker, F.H. Froes: in Status of Titanium Powder Metallurgy, Industrial Application of Titanium and Zirconium, ASTM International, Philadelphia, PA, 1984, pp. 48–65.

  103. O.M. Ivasishin: Mater. Forum, 2005, vol. 29, pp. 1–8.

    Google Scholar 

  104. A. Hadrboletz and B. Weiss: Int. Mater. Rev., 1997, vol. 42, pp.1–44.

    Article  Google Scholar 

  105. N. Chawla and X. Deng: Mater. Sci. Eng. A, 2005, vol. 390, pp. 98–112.

    Article  Google Scholar 

  106. R.J. Bourcier, D.A. Koss, R.E. Smelser, O. Richmond: Acta Metall., 1986, vol. 34, pp. 2443–2453.

    Article  Google Scholar 

  107. L.H. Cope: Metall. Met. Form, 1965, vol. 72, pp. 165.

    Google Scholar 

  108. M.K. Surappa, E. Blank, J.C. Jaquet: Scr. Metall., 1986, vol. 20, pp. 1281–1286.

    Article  Google Scholar 

  109. P. Kumar and K.S. Ravi Chandran: Titanium 2015, Science and Technology, Proceedings of the 13th International Conference on Titanium, The Minerals, Metals and Materials Society, San Diego, 2015, pp. 1441–46

  110. G. Lutjering, J. Albrecht, O.M. Ivasishin: Influence of Cooling Rate and Beta Grain Size on the Tensile Properties of(Alpha + Beta) Ti-Alloys, in: Titanium’95, 1995, pp. 1163–1170.

  111. G. Lütjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32–45.

    Article  Google Scholar 

  112. E.W. Collings: The physical metallurgy of titanium alloys, ASM International, Metals Park, Ohio, 1984.

    Google Scholar 

  113. M.J. Donachie: Titanium: A Tenchincal Guide, Second, ASM International, Materials Park, Ohio, 2000.

    Google Scholar 

  114. G. Lütjering and J.C. Williams, Titanium, Springer, Leipzig, Germany, 2003, p. 218.

    Book  Google Scholar 

  115. H.J. Rack and J.I. Qazi: Mater. Sci. Eng. C, 2006, vol. 26, pp. 1269–1277.

    Article  Google Scholar 

  116. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ: Mater. Sci. Eng. A, 2004, vol.372, pp. 191–198.

    Article  Google Scholar 

  117. G. Terlinde, H.-J. Rathjen, K.-H. Schwalbe: Metall. Trans. A, 1988, vol. 19, pp. 1037–1049.

    Article  Google Scholar 

  118. S. Kanamori, E. Abe, T. Tagawa, T. Miyata: Effects of constraint and grain size on ductility and toughness in Ti Alloys. Proceeding of 10th International Conference on Fracture, Honolulu, 2001.

  119. O. Ivasishin, V. Moxson: in Low-Cost Titanium Hydride Powder Metallurgy, in M. Qian, F.H. Froes, eds., Titanium Powder Metallurgy: Science, Technology and Application., Elsevier Inc., Library of the Congress, New York, 2015, pp. 117–48.

  120. V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama: Metall. Mater. Trans. A, 2003, vol 34, pp. 2793–2799.

    Article  Google Scholar 

  121. O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, V.A. Duz, C. Lavender: Production of Titanium Components from Hydrogenated Titanium Powder: Optimization of Parameters, M. Niinomi, S. Akiyama, eds., Ti-2007 Sci. Technol., Japan Institute of Metals, 2007: pp. 757–760.

  122. E. Nyberg, M. Miller, K. Simmons, K.S. Weil: Mater. Sci. Eng. C, 2005, vol. 25, pp. 336–342.

    Article  Google Scholar 

  123. V. V. Joshi, C. Lavender, V. Moxon, V. Duz, E. Nyberg, K.S. Weil: J. Mater. Eng. Perform., 2013, vol. 22, pp. 995–1003.

    Article  Google Scholar 

  124. P. Kumar, K.S. Ravichandran, F. Cao, P. Sun, M. Koopman, Z.Z. Fang: Titanium 2015, Science and Technology, Proceedings of the 13th International Conference on Titanium, The Minerals, Metals and Materials Society, San Diego, 2015, pp. 1355–59.

  125. W.R. Kerr: Metall. Trans. A, 1985, vol. 16, pp. 1077–1087.

    Article  Google Scholar 

  126. D.H. Kohn and P. Ducheyne: J. Mater. Sci., 1991, vol. 26, pp.534–544.

    Article  Google Scholar 

  127. X.L. Han, Q. Wang, D.L. Sun, H.X. Zhang: Scr. Mater., 2007, vol. 56, pp. 77–80.

    Article  Google Scholar 

  128. J.D. Paramore: PhD thesis, Relationship between processing, structure, and properties of titanium alloys produced by hydrogen sintering and phase transformation, University of Utah, 2015.

  129. G. Kasperovich, J. Hausmann: J. Mater. Process. Technol., 2015, vol. 220, pp. 202–214.

    Article  Google Scholar 

  130. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–307.

    Article  Google Scholar 

  131. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, J. Wang: JOM, 2015, vol. 67, pp. 555–563.

    Article  Google Scholar 

  132. B.E. Carroll, T.A. Palmer, A.M. Beese: Acta Mater., 2015, vol. 87, pp. 309–320.

    Article  Google Scholar 

  133. S. Ford, M. Despeisse: J. Clean. Prod., 2016, vol. 137, pp. 1573–1587.

    Article  Google Scholar 

  134. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, E. Masanet: J. Clean. Prod., 2016, vol. 135, pp. 1559–1570.

    Article  Google Scholar 

  135. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker: Mater. Des., 2015, vol. 86, pp. 545–554.

    Google Scholar 

  136. H.K. Rafi, N. V. Karthik, H. Gong, T.L. Starr, B.E. Stucker: J. Mater. Eng. Perform., 2013, vol. 22, pp. 3872–3883.

    Article  Google Scholar 

  137. H.K. Rafi, T.L. Starr, B.E. Stucker: Int. J. Adv. Manuf. Technol., 2013, vol. 69, pp. 1299–1309.

    Article  Google Scholar 

  138. B. Vandenbroucke and J.-P. Kruth: Rapid Prototyp. J., 2007, vol. 13, pp. 196–203.

    Article  Google Scholar 

  139. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker: J. Mech. Behav. Biomed. Mater., 2009 vol. 2, pp. 20–32.

    Article  Google Scholar 

  140. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach: Rapid Prototyp. J., 2010, vol. 16, pp. 450–59.

  141. B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–185.

    Article  Google Scholar 

  142. T. Vilaro, C. Colin, J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3190–3199.

    Article  Google Scholar 

  143. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian: Acta Mater., 2015, vol. 85, pp. 74–84.

    Article  Google Scholar 

  144. P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A. du Plessis, I. Yadroitsev: Phys. Procedia, 2016, vol. 83, pp. 778–88.

    Article  Google Scholar 

  145. J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, O.S. Es-Said: J. Mater. Eng. Perform., 2011, vol. 20, pp. 203–212.

    Article  Google Scholar 

  146. C. Qiu, N.J.E. Adkins, M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–239.

    Article  Google Scholar 

  147. T.M. Mower and M.J. Long: Mater. Sci. Eng. A, 2016, vol. 651, pp. 198–213.

    Article  Google Scholar 

  148. M. Koike, P. Greer, K. Owen, G. Lilly, L.E. Murr, S.M. Gaytan, E. Martinez, T. Okabe: Materials (Basel), 2011, vol. 4, pp. 1776–1792.

    Article  Google Scholar 

  149. P. Edwards, A. O’Conner, M. Ramulu: J. Manuf. Sci. Eng., 2013, vol. 135, pp. 61016-1-61016-7.

    Article  Google Scholar 

  150. L. Facchini, E. Magalini, P. Robotti, A. Molinari: Rapid Prototyp. J., 2009, vol. 15, pp. 171–178.

    Article  Google Scholar 

  151. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe: Mater. Charact., 2009, vol. 60, pp. 96–105.

    Article  Google Scholar 

  152. N. Hrabe and T. Quinn: Mater. Sci. Eng. A, 2013, vol. 573, pp. 264–270.

    Article  Google Scholar 

  153. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3422–3434.

    Article  Google Scholar 

  154. T. Ahmed and H.J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206–211.

    Article  Google Scholar 

  155. G. Shibo, Q. Xuanhui, H. Xinbo, Z. Ting, D. Bohua: J. Mater. Process. Technol., 2006, vol. 173, pp. 310–314.

    Article  Google Scholar 

  156. G.C. Obasi, O.M. Ferri, T. Ebel, R. Bormann: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3929–3935.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thankfully acknowledge the financial support from the US Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ravi Chandran.

Additional information

Manuscript submitted September 6, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Chandran, K.S.R. Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships. Metall Mater Trans A 48, 2301–2319 (2017). https://doi.org/10.1007/s11661-017-4009-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4009-x

Keywords

Navigation