Skip to main content
Log in

Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.Z. Fang, P. Sun and H. Wang, Adv. Eng. Mater., 2012, vol. 14, pp. 383-387.

    Article  Google Scholar 

  2. P. Sun, Z.Z. Fang and M. Koopman, Adv. Eng. Mater., 2013, vol. 15, pp. 1007-1013.

    Google Scholar 

  3. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran and M. Dunstan, Scripta Mater., 2015, 107, 103-106.

    Article  Google Scholar 

  4. Z.Z. Fang and S. Pei, Key Eng. Mater., 2012, vol. 520, pp. 15-23.

    Article  Google Scholar 

  5. P. Sun, Z.Z. Fang, M. Koopman, J. Paramore, K.S.R. Chandran, Y. Ren and J. Lu, Acta Mater., 2015, vol. 84, pp. 29-41.

    Article  Google Scholar 

  6. J. Greenspan, F.J. Rizzitano, and E. Scala: Titanium Science and Technology: Proceedings of the Second International Conference, Plenum Press, Cambridge, Massachusetts, 1973, pp. 365–79.

  7. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Savvakin: Development in Light Metals -Science, Technology and Applications International Conference, 19–24 Sept. 1999, Trans Tech Publications, Switzerland, 2000, pp. 55–62.

  8. O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson and K.A. Bondareva, Powder Metall. Met. Ceram., 2002, vol. 41, pp. 382-90.

    Article  Google Scholar 

  9. O.M. Ivasishin, K.A. Bondareva, V.I. Bondarchuk, O.N. Gerasimchuk, D.G. Savvakin and B.A. Gryaznov, Strength Mater., 2004, vol. 36, pp. 225-230.

    Article  Google Scholar 

  10. S.D. Luo, Y.F. Yang, G.B. Schaffer and M. Qian, Scripta Mater., 2013, vol. 69, pp. 69-72.

    Article  Google Scholar 

  11. F.H. Froes, O.N. Senkov and J.I. Qazi, Inter. Mater. Rev., 2004, vol. 49, pp. 227-245.

    Article  Google Scholar 

  12. U. Zwicker and W.S. Hans: U.S. Patent 2892742 A, 1959.

  13. W.R. Kerr, P.R. Smith, M.E. Rosenblum, F.J. Gurney, Y.R. Mahajan, and L.R. Bidwell: Titanium ‘80, Science and Technology, Proceedings of the 4th International Conference on Titanium., Metall Soc of AIME, Kyoto, Japan, 1980, pp. 2477–86.

  14. W.R. Kerr, Metall. Mater. Trans. A, 1985, vol. 16, pp. 1077-1087.

    Article  Google Scholar 

  15. B. Gong, M. Niinomi, T. Kobayashi and Y. Ohyabu, J. Jpn. Inst. Light Met., 1992, vol. 42, pp. 638-43.

    Article  Google Scholar 

  16. A.A. Ilyn, B.A. Kolachev and A.M. Mamonov, In Titanium’92 Science and Technology, San Diego, CA, 1992, Metallurgical Society of AIME, New York, pp 941-947.

    Google Scholar 

  17. C. Zhang, W. Bian, Z. Lai and B. Gong, Acta Metall. Sin. A, 1992, vol. 5, pp. 362-368.

    Google Scholar 

  18. T.Y. Fang and W.H. Wang, Mater. Chem. Phys., 1998, vol. 56, pp. 35-47.

    Article  Google Scholar 

  19. J. Qazi, J. Rahim, F. Fores, O. Senkov and A. Genc, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2453-2463.

    Article  Google Scholar 

  20. C.C. Shen and T.P. Perng, Acta Mater., 2007, vol. 55, pp. 1053-1058.

    Article  Google Scholar 

  21. A.A. Il’in, A.M. Mamonov, and M.U. Kollerov: Russ. Metall., 1994, vol. 1994, pp. 157–68.

    Google Scholar 

  22. M. Qian, Inter. J. Powder Metall., 2010, vol. 46, pp. 29-44.

    Google Scholar 

  23. G. Lütjering, Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45.

    Article  Google Scholar 

  24. H. Wang, Z.Z. Fang and P. Sun, Inter. J. Powder Metall., 2010, vol. 46, pp. 45-57.

    Google Scholar 

  25. S. Wright and B. Adams, Metall. Trans. A, 1992, vol. 23, pp. 759-767.

    Article  Google Scholar 

  26. A.A. Salem, M.G. Glavicic and S.L. Semiatin, Mater. Sci. Eng. A, 2008, vol. 494, pp. 350-359.

    Article  Google Scholar 

  27. Z. Wu and H. Bei, Mater. Sci. Eng. A, 2015, vol. 640, pp. 217-224.

    Article  Google Scholar 

  28. Z. Wu, C.M. Parish and H. Bei, J Alloy. Compd., 2015, vol. 647, pp. 815-822.

    Article  Google Scholar 

  29. F.D. Manchester and A. San-Martin, In Phase diagrams of binary hydrogen alloys, ASM International: Materials Park, OH, 2000.

    Google Scholar 

  30. M. Yan, M.S. Dargusch, C. Kong, J.A. Kimpton, S. Kohara, M. Brandt and M. Qian, Metall. Mater. Trans. A, 2015, vol. 46, pp. 41-45.

    Article  Google Scholar 

  31. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk and D.G. Savvakin, In Diffusion and Diffusional Phase Transformations in Alloys, Trans Tech Publications Ltd, Switzerland, 2008, pp 177-185.

    Google Scholar 

  32. X. Xu, G. Nash and P. Nash, J. Mater. Sci., 2014, vol. 49, pp. 994-1008.

    Article  Google Scholar 

  33. W.E. Wang, J Alloy. Compd., 1996, vol. 238, pp. 6-12.

    Article  Google Scholar 

  34. G. Lütjering and J.C. Williams: Titanium. Springer, New York, 2003.

    Book  Google Scholar 

  35. F.A. Crossley, Trans. AIME, 1969, vol. 245, pp. 1963-1968.

    Google Scholar 

  36. M. Yan, M.S. Dargusch, T. Ebel and M. Qian, Acta Mater., 2014, vol. 68, pp. 196-206.

    Article  Google Scholar 

  37. C.C. Shen, C.Y. Yu and T.P. Perng, Acta Mater., 2009, vol. 57, pp. 868-874.

    Article  Google Scholar 

  38. M.B. Ivanov, S.S. Manokhin, Y.R. Kolobov and D.A. Nechayenko, Mater. Phys. Mech., 2010, vol. 10, pp. 62-71.

    Google Scholar 

  39. F.H. Froes and H.B. Bomberger, JOM, 1985, vol. 37, pp. 28-37.

    Article  Google Scholar 

  40. A. Lenain, N. Clément, M. Véron and P.J. Jacques, J. Mater. Eng. Perform., 2005, vol. 14, pp. 722-727.

    Article  Google Scholar 

  41. N. Clement, A. Lenain and P.J. Jacques, JOM, 2007, vol. 59, pp. 50-3.

    Article  Google Scholar 

  42. R.F. Boyer and E. Collings: Materials properties handbook: titanium alloys. ASM International, Materials Park, OH, 1994.

    Google Scholar 

  43. Molchanova EK (1965) Phase Diagrams of Titanium Alloys. Jerusalem: Israel Program for Scientific Translations Ltd.

    Google Scholar 

  44. A.A. Ilyin, I.S. Polkin, A.M. Mamonov and V.K. Nosov, In Titanium ‘95: Science and Technology, Institute of materials, London, England, 1996, pp 2462-69.

    Google Scholar 

  45. A.A. Il’in, M.Y. Kollerov, S.V. Skvortsova, A.A. Popov and N.O. Osintseva, Russ. Metall., 2002, vol. 2002, pp. 263-267.

    Google Scholar 

  46. C. Leyens and M. Peters: Titanium and Titanium Alloys. Fundamental and Applications. Wiley-VCH, Weihheim, Germany, 2003.

    Book  Google Scholar 

  47. S.V. Skvortsova, A.A. Ilin, V.V. Zasypkin, G.V. Gurtovaya and E.V. Klubova, Russ. Metall., 2006, vol. 206, pp. 232-238.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support by the U.S. Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The first author acknowledges the valuable assistance of Dr. Xiangyi Luo, Mr. Chun Yu, and Mr. Rick Spence for synchrotron X-ray experiments at Argonne National Lab, and the help of Dr. Paulo Perez and Dr. Matt Nowell for collecting EBSD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zak Fang.

Additional information

Manuscript submitted November 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Fang, Z.Z., Koopman, M. et al. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V. Metall Mater Trans A 46, 5546–5560 (2015). https://doi.org/10.1007/s11661-015-3141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3141-8

Keywords

Navigation