Skip to main content
Log in

Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. ImageJ® developed by National Institute of Health, USA

  2. Netzsch DSC 404C, Burlington, MA, USA

  3. Netzsch LFA 457, Burlington, MA, USA

  4. Theta Dilatronic IX, Port Washington, NY, USA

References

  1. S. Roy, L.F. Allard, A. Rodriguez, T.R. Watkins, and A. Shyam: Metall. Mater. Trans. A, 2016, DOI:10.1007/s11661-017-3985-1.

  2. A.J. Ardell: Metall. Trans. A, 1985, vol. 16, pp. 2131–65.

    Article  Google Scholar 

  3. J.W. Martin: Precipitation Hardening: Theory and Applications, Elsevier Science, 2012.

  4. T. Gladman, Mater. Sci. Technol., 1999, vol. 15, pp. 30–36.

    Article  Google Scholar 

  5. C. Laird and H.I. Aaronson: Acta Metall., 1966, vol. 14, pp. 171–85.

    Article  Google Scholar 

  6. R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga: Acta Mater., 2003, vol. 51, pp. 4251–66.

    Article  Google Scholar 

  7. G.C. Weatherly and C.M. Sargent: Philos. Mag., 1970, vol. 22, pp. 1049–61.

    Article  Google Scholar 

  8. S.P. Ringer, K. Hono, and T. Sakurai: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2207-2217.

    Article  Google Scholar 

  9. M. Karlík, A. Bigot, B. Jouffrey, P. Auger, S. Belliot: Ultramicroscopy, 2004, vol. 98, pp. 219–30.

  10. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman: Acta Material., 2011, vol. 59, pp. 6187–6204.

    Article  Google Scholar 

  11. V. Fallah, A. Korinek, N. Ofori-Opoku, N. Provatas, and S. Esmaeili: Acta Material., 2013, vol. 61, pp. 6372–86.

    Article  Google Scholar 

  12. D. Vaughan and J.M. Silcock, Phys. Stat. Solidi (b), 1967, vol. 20, pp. 725–36.

  13. S.F. Baumann and D.B. Williams: Scripta Metall., 1984, vol. 18, pp. 611–16.

    Article  Google Scholar 

  14. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen, Acta Material., 2006, vol. 54, pp. 4699–4707.

    Article  Google Scholar 

  15. L. Bourgeois, C. Dwyer, M. Weyland, J.-F. Nie, and B.C. Muddle: Acta Material., 2011, vol. 59, pp. 7043–7050.

    Article  Google Scholar 

  16. L Bourgeois, C. Dwyer, M. Weyland, J.-F. Nie, and B.C. Muddle: Acta Material., 2012, vol. 60, pp. 633–644.

    Article  Google Scholar 

  17. C. Wolverton: Philos. Mag. Lett., 1999, vol. 79, pp. 683-690.

    Article  Google Scholar 

  18. C. Wolverton and V. Ozoliņš: Phys. Rev. Lett., 2001, vol. 86, pp. 5518–21.

    Article  Google Scholar 

  19. V. Vaithyanathan, C. Wolverton and L.Q. Chen: Acta Material., 2004, vol. 52, pp. 2973–87.

    Article  Google Scholar 

  20. J.D. Boyd and R.B. Nicholson: Acta Metall., 1971, vol. 19, pp. 1379–91.

    Article  Google Scholar 

  21. P. Merle and F. Fouquet, Acta Metall., 1981, vol. 29, pp. 1919-1927.

    Article  Google Scholar 

  22. J.F. Nie and B.C. Muddle: J. Phase Equilib., 1998, vol. 19, pp. 543–551.

    Article  Google Scholar 

  23. J.F. Nie and B.C. Muddle: Acta Material., 2008, vol. 56, pp. 3490–3501.

    Article  Google Scholar 

  24. J. da Costa Teixeira, L. Bourgeois, C.W. Sinclair, and C.R. Hutchinson: Acta Material., 2009, vol. 57, pp. 6075–89.

    Article  Google Scholar 

  25. A.W. Zhu, J. Chen, and E.A. Starke Jr.: Acta Material., 2000, vol. 48, pp. 2239–46.

    Article  Google Scholar 

  26. R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, and Z.Q. Hu, Mater. Lett., 2004, vol. 58, pp. 2096–2101.

    Article  Google Scholar 

  27. D. Ovono Ovono, I. Guillot, and D. Massinon: Scripta Material., 2006, vol. 55, pp. 259–62.

    Article  Google Scholar 

  28. P. Ouellet and F.H. Samuel: J. Mater. Sci., 1999, vol. 34, pp. 4671–97.

  29. F.J. Tavitas-Medrano, A.M.A. Mohamed, J.E. Gruzleski, F.H. Samuel, and H.W. Doty: J. Mater. Sci., 2009, vol. 45, pp. 641–651.

    Article  Google Scholar 

  30. S.C. Weakley-Bollin, W. Donlon, W. Donlon, C. Wolverton, J.E. Allison, and J.W. Jones: Metallur. Mater. Trans. A, 2004, vol. 35A, pp. 2407–18.

    Article  Google Scholar 

  31. K. Liu, X. Cao, and X.-G. Chen: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1566–75.

    Article  Google Scholar 

  32. W.W. Zhang, B. Lin, D.T. Zhang, and Y.Y. Li: Mater. Des., 2013, vol. 52, pp. 225–33.

    Article  Google Scholar 

  33. Y. Sui, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding: J. Alloys Compd., 2015, vol. 644, pp. 228-235.

    Article  Google Scholar 

  34. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2396-2409.

    Article  Google Scholar 

  35. R. Ahmad and M.B A. Asmael: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2799–2813.

    Article  Google Scholar 

  36. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3063–78.

    Article  Google Scholar 

  37. T. Lu, Y. Pan, W. Ji-li, S.-w. Tao, and Y. Chen: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 405–10.

    Article  Google Scholar 

  38. H. Yang, S. Ji, and Z. Fan: Mater. Des., 2015, vol. 85, pp. 823–32.

    Google Scholar 

  39. M.F. Ibrahim, A.M. Samuel, H.W. Doty, and F.H. Samuel: Int. J. Metalcast., 2016, pp. 1–13.

  40. S.K. Chaudhury, D. Apelian, P. Meyer, D. Massinon, and J. Morichon: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3276–86.

    Article  Google Scholar 

  41. H. Yang, S. Ji, W. Yang, Y. Wang, and Z. Fan: Mater. Sci. Eng. A, 2015, vol. 642, pp. 340–50.

    Article  Google Scholar 

  42. Y. Sui, Q. Wang, G. Wang, and T. Liu: J. Alloys Compd., 2015, vol. 622, pp. 572–79.

    Article  Google Scholar 

  43. S.C. Wang and M.J. Starink: Int. Mater. Rev., 2005, vol. 50, pp. 193–215.

    Article  Google Scholar 

  44. K. Teichmann, C.D. Marioara, S.J. Andersen, and K. Marthinsen: Mater. Charact., 2013, vol. 75, pp. 1–7.

    Article  Google Scholar 

  45. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Material., 1998, vol. 46, pp. 3893–904.

    Article  Google Scholar 

  46. J.Y. Yao, D.A. Graham, B. Rinderer, and M.J. Couper: Micron, 2001, vol. 32, pp. 865–70.

    Article  Google Scholar 

  47. K. Matsuda, S. Ikeno, H. Gamada, K. Fujii, Y. Uetani, T. Sato, and A. Kamio: Metall. Mater. Trans. A 1998, vol. 29, pp. 1161–67.

    Article  Google Scholar 

  48. D.G. Eskin: J. Mater. Sci., 2003, vol. 38, pp. 279–90.

  49. V. Fallah, B. Langelier, N. Ofori-Opoku, B. Raeisinia, N. Provatas, and S. Esmaeili: Acta Material., 2016, vol. 103, pp. 290–300.

    Article  Google Scholar 

  50. Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

  51. W. Kasprzak, H. Kurita, G. Birsan, and B.S. Amirkhiz: Mater. Des., 2016, vol. 103, pp. 365–76.

    Google Scholar 

  52. P. Zhang, Z. Li, B. Liu, and W. Ding: Mater. Sci. Eng. A, 2016, vol. 661, pp. 198–210.

    Article  Google Scholar 

  53. K.A. Abuhasel, M.F. Ibrahim, E.M. Elgallad, and F.H. Samuel: Mater. Des., 2016, vol. 91, pp. 388–97.

    Google Scholar 

  54. B. Wan, W. Chen, L. Liu, X. Cao, L. Zhou, and Z. Fu: Mater. Sci. Eng. A, 2016, vol. 666, pp. 165–75.

    Article  Google Scholar 

  55. M. Zamani and S. Seifeddine: Int. J. Metalcast., 2016, pp. 1–9.

  56. C.H. Caceres, C.J. Davidson, J.R. Griffiths, and Q.G. Wang: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2611–18.

  57. E. Sjölander and S. Seifeddine: J. Mater. Process. Technol., 2010, vol. 210, pp. 1249–59.

    Article  Google Scholar 

  58. R.A. Siddiqui, H.A. Abdullah, and K.R. Al-Belushi: J. Mater. Process. Technol., 2000, vol. 102, pp. 234–40.

    Article  Google Scholar 

  59. M. Abdulwahab, I.A. Madugu, S.A. Yaro, S.B. Hassan, and A.P.I. Popoola: Mater. Des., 2011, vol. 32, pp. 1159–66.

    Article  Google Scholar 

  60. H. Möller, G. Govender, and W.E. Stumpf: Int. J. Cast Metals Res., 2007, vol. 20, pp. 340–46.

    Article  Google Scholar 

  61. D.K. Dwivedi, R. Sharma, and A. Kumar: Int. J. Cast Metals Res., 2006, vol. 19, pp. 275–82.

    Article  Google Scholar 

  62. S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole: Metall. Mater. Trans. A, 2003, vol. 34, pp. 751–63.

    Google Scholar 

  63. A.K. Gupta, D.J. Lloyd, and S.A. Court, Mater. Sci. Eng. A, 2001, vol. 316, pp. 11–17.

    Article  Google Scholar 

  64. O.R. Myhr, Ø. Grong, and S.J. Andersen: Acta Material., 2001, vol. 49, pp. 65–75.

    Article  Google Scholar 

  65. P.A. Rometsch and G.B. Schaffer: Mater. Sci. Eng. A, 2002, vol. 325, pp. 424–34.

    Article  Google Scholar 

  66. W.A. Knox: Ultramicroscopy, 1976, vol. 1, pp. 175–80.

    Article  Google Scholar 

  67. S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, and H. Wang: Mater. Chem. Phys., 2009, vol. 115, pp. 690–95.

    Article  Google Scholar 

  68. N.F. Mott and F.R.N. Nabarro: Proc. Phys. Soc., 1940, vol. 52, p. 86.

    Article  Google Scholar 

  69. W. Kasprzak, F. Czerwinski, M. Niewczas, and D.L. Chen: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1365–78.

    Article  Google Scholar 

  70. L. Ding, Z. Jia, Y. Liu, Y. Weng, and Q. Liu: J. Alloys Compd., 2016, vol. 688A, pp. 362–67.

  71. V.M.J. Sharma, K.S. Kumar, B.N. Rao, and S.D. Pathak: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3186–95.

    Article  Google Scholar 

  72. M.E. Fine: Metall. Trans. A, 1975, vol. 6, pp. 625–30.

    Article  Google Scholar 

  73. C. Booth-Morrison, D.C. Dunand, and D.N. Seidman: Acta Material., 2011, vol. 59, pp. 7029–42.

    Article  Google Scholar 

  74. C.B. Fuller, D.N. Seidman, and D.C. Dunand: Acta Material., 2003, vol. 51, pp. 4803–14.

    Article  Google Scholar 

  75. M. Murayama, K. Hono, W. F. Miao, and D. E. Laughlin: Metall. Mater. Trans. A, 2001, vol. 32, pp. 239–46.

    Article  Google Scholar 

  76. M. Murayama and K. Hono: Acta Material., 1999, vol. 47, pp. 1537–48.

    Article  Google Scholar 

  77. S. Esmaeili, D.J. Lloyd, and W.J. Poole: Acta Material., 2003, vol. 51, pp. 3467–81.

    Article  Google Scholar 

  78. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, and H.-E. Ekström: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1999–2006.

    Article  Google Scholar 

  79. J. da Costa Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, and C.R. Hutchinson: Acta Material., 2008, vol. 56, pp. 6109–22.

    Article  Google Scholar 

  80. M. Song: Mater. Sci. Eng. A, 2007, vol. 443, pp. 172–77.

    Article  Google Scholar 

  81. O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara: Acta Material., 2004, vol. 52, pp. 4997–5008.

    Article  Google Scholar 

  82. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Acta Material., 2008, vol. 56, pp. 1182–95.

    Article  Google Scholar 

  83. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Acta Material., 2008, vol. 56, pp. 114–27.

    Article  Google Scholar 

  84. E.A. Marquis, D.N. Seidman, and D.C. Dunand: Acta Material., 2003, vol. 51, pp. 285–87.

    Article  Google Scholar 

  85. A.W. Zhu, A. Csontos, and E.A. Starke Jr.: Acta Material., 1999, vol. 47, pp. 1713–21.

    Article  Google Scholar 

  86. A. de Vaucorbeil, W.J. Poole, and C.W. Sinclair: Mater. Sci. Eng. A, 2013, vol. 582, pp. 147–54.

    Article  Google Scholar 

  87. G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen: Mater. Sci. Eng. A, 2003, vol. 344, pp. 113–124.

    Article  Google Scholar 

  88. G. Grimvall: Thermophysical Properties of Materials, Elsevier Science, 1999.

  89. T.M. Tritt: Thermal Conductivity: Theory, Properties, and Applications, Springer US, 2006.

    Google Scholar 

  90. L. Han, N. Van Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, and S. Linderoth: RSC Adv., 2014, vol. 4, pp. 12353–61.

    Article  Google Scholar 

  91. J.M. Pelletier, G. Vigier, J. Merlin, P. Merle, F. Fouquet, and R. Borrelly: Acta Metall., 1984, vol. 32, pp. 1069–78.

    Article  Google Scholar 

  92. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, and R. Decourt, Acta Material., 2011, vol. 59, pp. 7425–37.

    Article  Google Scholar 

  93. J. Callaway and H.C. von Baeyer: Phys. Rev., 1960, vol. 120, pp. 1149–54.

    Article  Google Scholar 

  94. A.M.B. Collieu and D.J. Powney: The Mechanical and Thermal Properties of Materials, Crane Russak, 1973.

  95. B.P. Bhardwaj: The Complete Book on Production of Automobile Components & Allied Products, NIIR Project Consultancy Services, 2014.

Download references

Acknowledgments

The authors acknowledge Dana McClurg for the indentation experiments and Zach LaDouceur and Patrick Shower for image analysis. The research was sponsored by the Propulsion Materials Program, DOE Office of Vehicle Technologies. This research utilized some equipment purchased by the Oak Ridge National Laboratory’s High Temperature Materials Laboratory User Program which was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibayan Roy.

Additional information

Manuscript submitted May 18, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Allard, L.F., Rodriguez, A. et al. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties. Metall Mater Trans A 48, 2543–2562 (2017). https://doi.org/10.1007/s11661-017-3986-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3986-0

Keywords

Navigation