Skip to main content
Log in

Precipitation hardening of aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The author’s charge was to discuss recent trends in research and development on precipitation hardened aluminum alloys and to indicate where research is needed. This will be done for three areas: fatigue, properties of grain boundaries and interfaces, and stability of precipitates at elevated temperatures. Present strong precipitation hardened aluminum alloys do not have high endurance limits. One problem is that the small GP zones are cut by the dislocations giving rise to highly localized deformation which aids fatigue crack initiation. A duplex structure with relatively large uniformly spaced precipitates to give more homogeneous deformation plus small precipitates to give high yield strength is a promising approach.

The structures of precipitation hardened aluminum base alloys are essentially controlled by the stabilities of the various precipitates and the interfacial energies. Precipitates with high interfacial energies tend to precipitate preferentially at grain boundaries giving embrittlement. Low interfacial energy means easy nucleation, a uniform precipitate distribution, and resistance to coarsening at elevated temperatures. For elevated temperature use, the precipitate must be stable at elevated temperatures. Precipitation hardened aluminum alloys do not have good elevated temperature properties because the hardening precipitates normally used, GP zones, are not stable at elevated temperatures. Thus a low interfacial energy, ductile precipitate, which is stable at elevated temperatures, is needed for aluminum. Possibilities for achieving such precipitates will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Hunsicker and H. C. Stumpf:History of Precipitation Hardening, Met. Soc. Conf. Vol. 27, Sorby Centennial Symposium, C. S. Smith, ed., pp. 271–311, Gordon and Breach, New York, 1965.

    Google Scholar 

  2. P. D. Merica, R. G. Wallenberg, and H. Scott:Sci. Paper (U.S. Bureau of Standards), 1919, p. 347.

  3. Z. Jeffries and R. S. Archer:The Structure of Metals, McGraw-Hill, New York, 1924.

    Google Scholar 

  4. A. Guinier:Compt. Rend., 1938, vol. 206, p. 1641;Solid State Phys., 1959, vol. 9, p. 294.

    CAS  Google Scholar 

  5. A Kelly and R. B. Nicholson:Progr. Mater. Sci., 1963, vol. 10, no. 3, p. 151.

    Google Scholar 

  6. R. B. Nicholson and J. Nutting:Phil. Mag., 1958, vol. 3, no. 8, p. 531.

    CAS  ADS  Google Scholar 

  7. V. A. Phillips:Acta Met., 1973, vol. 21, p. 219.

    Article  CAS  Google Scholar 

  8. V. Gerold:Z. Metallk., 1954, vol. 45, pp. 593 and 599;Acta Crystatog, 1958, vol. 11, p. 230.

    CAS  Google Scholar 

  9. J. B. Cohen: Northwestern University, Department of Materials Science, Evanston, Illinois, private communication, 1970.

  10. J. E.Graff and J. B. Cohen:Acta Met., 1971, vol. 19, p. 507.

    Article  Google Scholar 

  11. R. Bauer and V. Geold:ActaMet., 1962, vol. 10, p. 637.

    Google Scholar 

  12. A. Kelly and P. B. Hirsch:Phil. Mag., 1965, vol. 12, p. 881.

    Article  ADS  Google Scholar 

  13. J. A. Nock, Jr.:Aluminum, Properties, Physical Metallurgy and Phase Diagrams, p. 303, Kent R. Van Horn, ed., American Society for Metals, Metals Park, Ohio, 1967.

    Google Scholar 

  14. F. Ostermann:Met. Trans., 1971, vol. 2, p. 2897.

    Article  CAS  Google Scholar 

  15. D. T. Raske and J.D. Morrow:Manual on Low Cycle Fatigue, ASTM STP 465, p. 1, 1970.

  16. I. Kerman:Met. Trans., 1971, vol. 2, p. 2897.

    Article  Google Scholar 

  17. M. Meshii: Northwestern University, Department of Materials Science, Evanston, 111., private communication, 1973.

  18. P. Paris and F. Erdogan:Trans. ASME, 1963, vol. 85, p. 528.

  19. S. M. El-Soudani and R. M. Pelloux:Met. Trans., 1973, vol. 4, p. 519.

    Article  CAS  Google Scholar 

  20. J. D. Boyd, D. C. Drennon, C. J. Martin, C. W. Price, A. R. Rosenfield, D. N. Williams, and D. S. Thompson: Battelle Tech. Rept. AFML TR 72-199.

  21. L. A. Willey:Aluminum, Properties, Physical Metallurgy and Phase Diagrams, p. 359, Kent R. Van Horn, ed., American Society for Metals, Metals Park, Ohio, 1967.

    Google Scholar 

  22. E. Nes:ActaMet., 1972, vol. 20, p. 499.

    CAS  Google Scholar 

  23. L. W. Mayer: Alcoa aluminum alloy 2219, Alcoa Green Letter, Alum. Co. of Amer. Appl. Eng. Div., November 1963.

  24. J.D. Boyd and R. B. Nicholson:Acta Met., 1971,vol. 19,p. 1101, 1379.

    Article  CAS  Google Scholar 

  25. B.C. Peters:Met. Trans., 1971, vol. 2, p. 1255.

    Article  CAS  Google Scholar 

  26. J. T. Staley, R. H. Brown, and R. Schmidt:Met. Trans., 1972, vol. 3, p. 191.

    Article  CAS  Google Scholar 

  27. C. R. Shastry and G. Judd:Met. Trans., 1972, vol. 3, p. 779.

    Article  CAS  Google Scholar 

  28. C. A. Grove and G. Judd:Met. Trans., 1973, vol. 4, p. 1023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on an invited presentation made at a symposium on “Advances in the Physical Metallurgy of Aluminum Alloys” held at the Spring Meeting of TMS-IMD in Philadelphia, Pennsylvania, on May 29 to June 1, 1973. The symposium was co-sponsored by the Physical Metallurgy Committee and the Non-Ferrous Metals Committee of TMS-IMD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fine, M.E. Precipitation hardening of aluminum alloys. Metall Trans A 6, 625–630 (1975). https://doi.org/10.1007/BF02672283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672283

Keywords

Navigation