Skip to main content
Log in

Characterization of Dendritic Microstructure, Intermetallic Phases, and Hardness of Directionally Solidified Al-Mg and Al-Mg-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 16 June 2015

Abstract

Despite the widespread application of Al-Mg-Si alloys, especially in the automotive industry, interrelations of solidification thermal parameters (cooling rate and growth rate), microstructure, and hardness are not properly established. For instance, the control of the scale of the microstructure on both Al-Mg and Al-Mg-Si alloys by adequate pre-programming of the solidification thermal parameters remains a task to be accomplished. In the present study, the directional solidification (DS) of these alloys under unsteady-state solidification conditions is investigated in an attempt to characterize the evolution of microstructural features, macrosegregation, and hardness as a function of local solidification thermal parameters along the DS castings length. Silicon addition to the Al-Mg alloy was found not to affect the sizes of primary and secondary dendrite arm spacings, but induced the onset of tertiary dendritic branches and affected also the size and distribution of intermetallic particles within the interdendritic regions. The Al-Mg-Si alloy is characterized by a more complex arrangement of phases, including binary (α-Al + Mg2Si) and refined ternary (α-Al + Mg2Si + AlFe(Si) eutectic mixtures. As a consequence, a higher Vickers hardness profile is shown to be associated with the ternary Al-Mg-Si alloy DS casting. For both alloys examined, hardness is shown to increase with the increase in the microstructural spacing according to Hall–Petch type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I. Bakos, S. Szabo: Corros. Sci., 2008, vol. 50, pp. 200-5.

    Article  Google Scholar 

  2. CH Caceres, IL Svensson, JA Taylor: Int. J. Cast. Metal. Res., 2003, vol. 15, pp. 531-43.

    Google Scholar 

  3. G García-García, J Espinoza-Cuadra, H Mancha-Molinar: Mater. Des., 2007, vol 28, pp. 428-33.

    Article  Google Scholar 

  4. Z Li, AM Samuel, FH Samuel, C Ravindran, S Valtierra, HW Doty: Mater. Sci. Eng. A., 2005, vol. 367, pp. 96 -110.

    Article  Google Scholar 

  5. J.W. Bray: Properties and Selection: Nonferrous Alloys, ASM Metals Handbook, 10th ed., ASM Intl., 1976, vol. 2, p. 148.

  6. E Romhanji, M Popovic: MjoM., 2006, vol. 12, pp. 297-307.

    Google Scholar 

  7. AM Samuel, FH Samuel: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2359-72.

    Article  Google Scholar 

  8. YL Liu, SB Kang: Mater. Sci. Tech., 1997, vol. 13, pp. 331-6.

    Article  Google Scholar 

  9. RX Li, RD Li, YH Zhao, LZ He, CX Li, HR Guan, ZQ Hu: Mater. Lett., 2004, vol. 58, pp. 2096-01.

    Article  Google Scholar 

  10. PR Goulart, JE Spinelli, WR Osório, A Garcia: Mater. Sci. Eng. A., 2006, vol. 421, pp. 245-53.

    Article  Google Scholar 

  11. MD Peres, CA Siqueira, A Garcia: J. Alloys Compd., 2004, vol. 381, pp. 168-81.

    Article  Google Scholar 

  12. KS Cruz, ES Meza, FA Fernandes, JM Quaresma, LC Casteletti, A Garcia: Metall. Mater. Trans. A, 2010, vol.41A, pp. 972-84.

    Article  Google Scholar 

  13. WR Osório, CA Siqueira, C. A Santos, A Garcia: Int. J. Electrochem. Sci., 2011, vol. 6, pp. 6275-89.

    Google Scholar 

  14. S Ji, W Yang, F Gao, D Watson, Z Fan: Mater. Sci. Eng. A, 2013, vol. 564, pp. 130-9.

    Article  Google Scholar 

  15. Z Yi, YX Gao, PD Lee, TC Lindley: Mater. Sci. Eng. A., 2004, vol. 386, pp. 396-407.

    Article  Google Scholar 

  16. YL Liu, SB Kang: J. Mater. Sci., 1997, vol. 32, pp. 1443-7.

    Article  Google Scholar 

  17. YL Liu, SB Kang, HW Kim: Mater. Lett., 1999, vol. 41, pp. 267-72.

    Article  Google Scholar 

  18. Y Kaygısız, N Marasli: J. Alloys Compd., 2015, vol. 618, pp. 197–203.

    Article  Google Scholar 

  19. DM Rosa, JE Spinelli, IL Ferreira, A Garcia: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 2161-74.

    Article  Google Scholar 

  20. M Gunduz, E Çardili E: Mater. Sci. Eng. A., 2002, vol. 327, pp. 167-85.

    Article  Google Scholar 

  21. T. Jalanti, M. Swierkosz, M. Gremaud, and M. Rappaz: Continuous Casting, 2001, pp. 191–98.

  22. CJ Vreeman, FP Incropera: Int. J. Heat Mass Tran, 2000, vol. 43, pp. 687-704.

    Article  Google Scholar 

  23. DG McCartney, JD Hunt: Acta Metall., 1981, vol. 29, pp. 1851-63.

    Article  Google Scholar 

  24. N Cheung, NS Santos, JMV Quaresma, GS Dulikravich, A Garcia: Int. J. Heat Mass Tran., 2009, vol. 52, pp. 451-9.

    Article  Google Scholar 

  25. PR Goulart, JE Spinelli, N Cheung, IL Ferreira, A Garcia: J. Alloys Compd., 2009, vol. 470, pp. 589-99.

    Article  Google Scholar 

  26. J Kim, K Seong, J Jun, K Kim, W Jung: J. Korean Found. Society, 2004, vol. 24, pp. 138-44.

    Google Scholar 

  27. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworths, London, 1979.

    Google Scholar 

  28. S Kumar, NH Babu, GM Scamans, Z Fan, KAQ O’reilly: Metall. Mater. Trans. A., 2014, vol. 45A, pp.2842-54.

    Article  Google Scholar 

  29. IL Ferreira, JFC Lins, DJ Moutinho, LG Gomes, A Garcia: J. Alloys Compd., 2010, vol. 503, pp. 31-9.

    Article  Google Scholar 

  30. MV Canté, C Brito, JE Spinelli, A Garcia: Mater. Des., 2013, vol. 51, pp. 342-6.

    Article  Google Scholar 

  31. ZH Lee, BJ Lee, MS Kang, SM Chung, SR Coriell: J. Cryst. Growth, 1994, vol. 141, pp. 209-18.

    Article  Google Scholar 

  32. M Gündüz, JD Hunt: Acta Metall., 1989, vol. 37, pp. 1839-45.

    Article  Google Scholar 

  33. MV Cante, JE Spinelli, IL Ferreira, N Cheung, A Garcia: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 1712-26.

    Article  Google Scholar 

  34. JD Hunt, SZ Lu: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 611-23.

    Article  Google Scholar 

  35. D Bouchard, JS Kirkaldy: Metall. Mater. Trans. B., 1997, vol. 28B, pp. 651-63.

    Article  Google Scholar 

  36. J.D. Hunt: International Conference on Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 3–9.

  37. W Kurz, DJ Fisher: Acta Metall., 1981, vol. 29, pp.11-20.

    Article  Google Scholar 

  38. R Trivedi: Metall.Trans. A., 1984, vol. 15A, pp. 977-82.

    Article  Google Scholar 

  39. SN Tewari, RN Grugel, DR Poirier: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 4758-61.

    Article  Google Scholar 

  40. K Kondoh, H Oginuma, A Kimura, S Matsukawa, T Aizawa: Mater. Trans., 2003, vol. 44, pp. 981-5.

    Article  Google Scholar 

  41. A Verma, S Kumar, PS Grant, KAQ O’Reilly: J. Alloys Compd., 2013, vol. 555, pp. 274-82.

    Article  Google Scholar 

  42. WD Fei, SB Kang: J Mater. Sci. Lett., 1995, vol. 14, pp. 1795-7.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by FAPESP- São Paulo Research Foundation, Brazil (Grants 2012/08494-0; 2012/16328-2 and 2013/23396-7), FAEPEX-UNICAMP and CNPq (The Brazilian Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Spinelli.

Additional information

Manuscript submitted February 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, C., Costa, T.A., Vida, T.A. et al. Characterization of Dendritic Microstructure, Intermetallic Phases, and Hardness of Directionally Solidified Al-Mg and Al-Mg-Si Alloys. Metall Mater Trans A 46, 3342–3355 (2015). https://doi.org/10.1007/s11661-015-2967-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2967-4

Keywords

Navigation