Skip to main content
Log in

Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.R. Mutama: ASME 2013 Power Conference, Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance, July 29–August 1, 2013, Boston, Massachusetts, USA, Paper No. POWER2013-98289, ASME, New York, USA, 2013, pp. V001T04A009.

  2. I.G. Wright, P.J. Maziasz, F.V. Ellis, T.B. Gibbons and D.A. Woodford: Proceedings of the 29th International Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, USA, April 18–23, 2004, Coal Technology Association, Gaithersburg, 2004.

  3. P.J. Maziasz, I.G. Wright, J.P Shingeldecker, T.B. Gibbons and R.R. Romanosky: Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, October 25–28, 2004, Hilton Head Island, South Carolina, USA, Electric Power Research Institute, Palo Alto, CA, 2005, pp. 602–622.

  4. A.A. Bazazi: Doctoral dissertation, Ruhr-Universität Bochum, 2009.

  5. D.J. Abson, J.S. Rothwell and B.J. Cane: Advances in Material Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, October 3–5, 2007, Miami, Florida, USA, Electric Power Research Institute, Palo Alto, California, USA, 2008, pp. 790–808.

  6. A. DiGianfrancesco, S.T. Vipraio and D. Venditti: Procedia Eng., 2013, vol. 55, pp. 27–35.

    Article  Google Scholar 

  7. L. Xu, B. Wang, J. Zhu, W. Li and Z. Zheng: Appl. Surf. Sci., 2016, vol. 379, pp. 39–46.

    Article  Google Scholar 

  8. B.M. Schönbauer, A. Perlega, U.P. Karr, D. Gandy and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2015, vol. 76, pp. 19–32.

    Article  Google Scholar 

  9. J. Metsäjoki, E. Huttunen-Saarivirta and T. Lepistö: Fuel, 2014, vol. 133, pp. 173–181.

    Article  Google Scholar 

  10. F. Abe, T.U. Kern and R. Viswanathan: Creep-resistant steels, Woodhead Publishing, CRC Press, Cambridge, England, 2008.

    Book  Google Scholar 

  11. J. Hald: Steel Research, 1996, vol. 67, no. 9, pp. 369–374.

    Article  Google Scholar 

  12. A.A. Tchizhik, T.A. Tchizhik and A.A. Tchizhik: J. Mater. Process. Technol., 1998, vol. 77, no. 1, pp. 226–232.

    Article  Google Scholar 

  13. D. Rojas, J. Garcia, O. Prat, G. Sauthoff and A.R. Kaysser-Pyzalla: Mater. Sci. Eng., A, 2011, vol. 528, no. 15, pp. 5164–5176.

    Article  Google Scholar 

  14. Y.X. Chen, W. Yan, W. Wang, Y.Y. Shan and K. Yang: Mater. Sci. Eng., A, 2012, vol. 534, pp. 649–653.

    Article  Google Scholar 

  15. K.-H. Lee, J.-Y. Suh, S.-M. Hong, J.-Y. Huh and W.-S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–272.

    Article  Google Scholar 

  16. S.D. Yadav, S. Kalácska, M. Dománková, D. Canelo Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch and C. Poletti: Mater. Charact., 2016, vol. 115, pp. 23–31.

    Article  Google Scholar 

  17. B. Fournier, F. Dalle, M. Sauzay, J. Longour, M. Salvi, C. Caës, I. Tournié, P.-F. Giroux and S.-H. Kim: Mater. Sci. Eng., A, 2011, vol. 528, no. 22–23, pp. 6934–6945.

    Article  Google Scholar 

  18. B.M. Schönbauer and S.E. Stanzl-Tschegg: Ultrasonics, 2013, vol. 53, no. 8, pp. 1399–1405.

    Article  Google Scholar 

  19. B.M. Schönbauer, S.E. Stanzl-Tschegg, A. Perlega, R.N. Salzman, N.F. Rieger, S. Zhou, A. Turnbull and D. Gandy: Int. J. Fatigue, 2014, vol. 65, pp. 33–43.

    Article  Google Scholar 

  20. G. Härkegård: Theor. Appl. Fract. Mech., 2016, vol. 84, pp. 93–97.

    Article  Google Scholar 

  21. K. Asai: Procedia Eng., 2010, vol. 2, no. 1, pp. 475–484.

    Article  Google Scholar 

  22. M. Łomozik, A. Hernas and M.L. Zeman: Mater. Sci. Eng., A, 2015, vol. 637, pp. 82–88.

    Article  Google Scholar 

  23. K. Fuentes and K. Oberle: J. Eng. Gas Turbines Power, 1989, vol. 111, no. 4, pp. 666–671.

    Article  Google Scholar 

  24. C. Borgmann, P. Dumstorff, T.-U. Kern, H. Almstedt and K. Niepold: J. Eng. Gas Turbines Power, 2015, vol. 138(4):042601-042601.

    Article  Google Scholar 

  25. K. Nakamura, T. Tabei and T. Takano: Fuji Electric Journal, 2010, vol. 83, no. 3, pp. 123–128.

    Google Scholar 

  26. P. Mayr, T.A. Palmer, J.W. Elmer and H. Cerjak: Adv. Mat. Res., 2007, vol. 15-17, pp. 1014-1019.

    Article  Google Scholar 

  27. O. Prat, J. García, D. Rojas, J.P. Sanhueza, C. Camurri: Mater. Chem. Phys., 2014, vol. 143, no. 2, pp. 754–764.

    Article  Google Scholar 

  28. K. Miao, Y. He, N. Zhu, J. Wang, X. Lu and L. Li: J. Alloys Compd., 2015, vol. 622, pp. 513–523.

    Article  Google Scholar 

  29. Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He and M. Wang: Mater. Charact., 2016, vol. 111, pp. 122–127.

    Article  Google Scholar 

  30. Y. Han, X. Xue, T. Zhang, R. Hu and J. Li: Mater. Sci. Eng., A, 2016, vol. 667, pp. 391–401.

    Article  Google Scholar 

  31. F. Liu, M. Rashidi, L. Johansson, J. Hald and H.-O. Andrén: Scr. Mater., 2016, vol. 113, pp. 93–96.

    Article  Google Scholar 

  32. Q. Lu, W. Xu and S. van der Zwaag: Acta Mater., 2014, vol. 77, pp. 310–323.

    Article  Google Scholar 

  33. S.L. Mannan and K. Laha: Trans. Indian Inst. Met., 1996, vol. 49, no. 4, pp. 303–320.

    Google Scholar 

  34. F. Abe and M. Tabuchi: Sci. Technol. Weld. Joi., 2004, vol. 9, no. 1, pp. 22–30.

    Article  Google Scholar 

  35. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak and A. Cardona: Nat. Methods, 2012, vol. 9, no. 7, pp. 676–682.

    Article  Google Scholar 

  36. GIMP – The GNU Image Manipulation Program: http://www.gimp.org. Accessed December, 2015.

  37. A. Mitchell: The ESRI Guide to GIS Analysis, vol. 2: Spatial Measurements and Statistics, ESRI Press, California, 2005.

  38. C. Dinh, B. Marriner, R. Tadros, S.Y. Kim and T. Farineau: General Electric Company, 2016, https://powergen.gepower.com/content/dam/gepower-pgdp/global/en_US/documents/technical/ger/ger4933-fossil-cyclic-duty-tech-paper.pdf, Accessed September 2016.

  39. I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Forêt and A. Diem: Tribol. Int., 2014, vol. 79, pp. 99–110.

    Article  Google Scholar 

  40. J.F. Archard: J. Appl. Phys., 1953, vol. 24, no. 8, pp. 981–988.

    Article  Google Scholar 

  41. F. Vodopivec, M. Jenko and J. Vojvodič-Tuma: Metalurgija, 2006, vol. 45, no. 3, pp. 147–153.

    Google Scholar 

  42. F. Abe (2008) Sci. Technol. Adv. Mater, 9(1):013002

    Article  Google Scholar 

  43. D.A. Skobir, F. Vodopivec, M. Jenko, S. Spaić and B. Markoli: Int. J. Mater. Res., 2004, vol. 95, no. 11, pp. 1020–1024.

    Google Scholar 

  44. M. Vardavoulias, M. Jeandin and F. Grillon: Scr. Metall. Mater., 1993, vol. 29, no. 3, pp. 359–364.

    Article  Google Scholar 

  45. P.W. Voorhees: J. Stat. Phys., 1985, vol. 38, no. 1, pp. 231–252.

    Article  Google Scholar 

  46. F. Kafexhiu: Master thesis, Jozef Stefan International Postgraduate School, Ljubljana, Slovenia, 2010.

  47. F. Kafexhiu, F. Vodopivec and J.V. Turna: Mater. Tehnol., 2012, vol. 46, no. 5, pp. 459–464.

    Google Scholar 

  48. H.Y. Zhang, Y.H. Lu, M. Ma and J. Li: Wear, 2014, vol. 315, no. 1–2, pp. 58–67.

    Article  Google Scholar 

  49. H. M. Lee, S.M. Allen and M. Grujicic: Metall. Trans. A, 1991, vol. 22, pp. 2863–2868.

    Article  Google Scholar 

  50. H. M. Lee, S.M. Allen and M. Grujicic: Metall. Trans. A, 1991, vol. 22, pp. 2869–2876.

    Article  Google Scholar 

  51. F.H. Stott: Tribol. Int., 1998, vol. 31, no. 1–3, pp. 61–71.

    Article  Google Scholar 

  52. I. Velkavrh, F. Ausserer, S. Klien, J. Voyer, A. Ristow, J. Brenner, P. Forêt and A. Diem: Tribol. Int., 2016, vol. 98, pp. 155–171.

    Article  Google Scholar 

  53. F.H. Stott: Tribol. Int., 2002, vol. 35, pp. 489–495.

    Article  Google Scholar 

  54. A. Pauschitz, M. Roy and F. Franek: Tribol. Int., 2008, vol. 41, pp. 584–602.

    Article  Google Scholar 

  55. S.R. Pearson, P.H. Shipway, J.O. Abere and R.A.A. Hewitt: Wear, 2013, vol. 303, pp. 622–631.

    Article  Google Scholar 

  56. X.H. Cui, S.Q. Wang, M.X. Wei and Z.R. Yang: J. Mater. Eng. Perform., 2011, vol. 20, no. 6, pp. 1055–1062.

    Article  Google Scholar 

  57. M.X. Wei, S.Q. Wang, K.M. Chen and X.H. Cui: Wear, 2011, vol. 272, pp. 110–121.

    Google Scholar 

  58. S. Mozgovoy, J. Hardell, L. Deng, M. Oldenburg and B. Prakash: Tribology - Materials, Surfaces & Interfaces, 2014, vol. 8, no. 2, pp. 65–73.

    Article  Google Scholar 

  59. O.A. Zambrano, J.J. Coronado, S.A. Rodríguez (2015) Tribol. Lett. 57(2):19.

    Article  Google Scholar 

  60. S.Q. Wang, M.X. Wei, F. Wang, X.H. Cui and C. Dong, Tribol. Lett., 2008, vol. 32, no. 2, pp. 67–72.

    Article  Google Scholar 

  61. B. Podgornik, B. Žužek, F. Kafexhiu, V. Leskovšek (2016) Tribol. Lett. 63(1): 5.

    Article  Google Scholar 

Download references

Acknowledgments

The work presented was funded by the Austrian COMET Programme (Project XTribology, No. 849109) and carried out at the “Excellence Center of Tribology” (AC2T research GmbH) in co-operation with V-Research GmbH and Institute of metals and technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Velkavrh.

Additional information

Manuscript submitted February 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velkavrh, I., Kafexhiu, F., Klien, S. et al. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear. Metall Mater Trans A 48, 109–125 (2017). https://doi.org/10.1007/s11661-016-3830-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3830-y

Keywords

Navigation