Skip to main content

Advertisement

Log in

Mechanical Properties and Microstructural Characterization of Cu-4.3 Pct Sn Fabricated by Selective Laser Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Components were fabricated via selective laser melting (SLM) of prealloyed Cu-4.3 pct Sn powder and heat treated at 873 K and 1173 K (600 °C and 900 °C) for 1 hour. Tensile testing, conductivity measurement, and detailed microstructural characterization were carried out on samples in the as-printed and heat-treated conditions. Optimization of build parameters resulted in samples with around 97 pct density with a yield strength of 274 MPa, an electrical conductivity of 24.1 pct IACS, and an elongation of 5.6 pct. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a submicron cellular solidification substructure. Nanometer scale tin dioxide particles identified via X-ray diffraction were found throughout the structure in the tin-rich intercellular regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies,1st ed., Springer, New York, NY, 2010, p. 459.

    Book  Google Scholar 

  2. J.P. Kruth et al.: Rap. Prototyp. J., 2005, vol. 11 (1), pp. 26–36.

    Article  Google Scholar 

  3. D. Ramirez et al.: Acta Mater., 2011, vol. 59 (10), pp. 4088–99.

    Article  Google Scholar 

  4. M. Lodes, R. Guschlbauer, and C. Körner: Mater. Lett., 2015, vol. 143, pp. 298–301.

    Article  Google Scholar 

  5. N. Tolochko et al.: Rap. Prototyp. J., 2000, vol. 6 (3), pp. 155–61.

    Article  Google Scholar 

  6. S. Pogson et al.: Rap. Prototyp. J., 2003, vol. 9 (5), pp. 334–43.

    Article  Google Scholar 

  7. D. Gu et al.: Int. Mater. Rev., 2012, vol. 57 (3), pp. 133–64

    Article  Google Scholar 

  8. B. Song et al.: Front. Mech. Eng., 2015, vol. 10 (2), pp. 111–25.

    Article  Google Scholar 

  9. L. Loh et al.: Int. J. Heat Mass Transfer, 2015, vol. 80, pp. 288–300.

    Article  Google Scholar 

  10. L. Thijs et al.: Acta Mater., 2010, vol. 58 (9), pp. 3303–12.

    Article  Google Scholar 

  11. E. Yasa and J.P. Kruth: Proc. Eng., 2011, vol. 19, pp. 389–95.

    Article  Google Scholar 

  12. W. Shifeng et al.: J. Mater. Process. Technol., 2014, vol. 214 (11), pp. 2660–67.

    Article  Google Scholar 

  13. B. Vrancken et al.: J. Alloys Compds., 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  14. A.A. Antonysamy et al.: Mater. Charact., 2013, vol. 84, pp. 153–68.

    Article  Google Scholar 

  15. J. Donoghue et al.: Mater. Charact., 2016, vol. 114, pp. 103–14.

    Article  Google Scholar 

  16. L. Thijs et al.: Acta Mater., 2013, vol. 61 (5), pp. 1809–19.

    Article  Google Scholar 

  17. T. Niendorf et al.: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 794–96.

    Article  Google Scholar 

  18. J. Davis: ASM Specialty Handbook: Copper and Copper Alloys, 1st ed., ASM International, Materials Park, OH, 2001, pp. 3–5 and 32–50.

  19. S. Kou: Welding Metallurgy, 1st ed., John Wiley & Sons, Hoboken, NJ, 2003, p. 478.

    Google Scholar 

  20. T. Kals and R. Eckstein: J. Mater. Process. Technol., 2000, vol. 103 (1), pp. 95–101.

    Article  Google Scholar 

  21. C.H. Suh, Y.C. Jung, and Y.S. Kim: J. Mater. Sci. Technol., 2010, vol. 24 (10), pp. 2091–98.

    Google Scholar 

  22. B. Vrancken et al.: Solid Freeform Fabrication Symp. Proc., 2013, pp. 393–407.

  23. P. Mercelis and J.P. Kruth: Rap. Prototyp. J., 2006, vol. 12 (5), pp. 254–65.

    Article  Google Scholar 

  24. H. McQueen and W.J M. G Tegart: Sci. Am., 1975, vol. 232 (4), pp. 116–25.

  25. H. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63 (5), pp. 125–60.

    Article  Google Scholar 

  26. D. Porterling and K. Easterling: Phase Transformations in Metals and Alloys, 3rd ed., Boca Raton, FL, 2009, pp. 100–04.

    Google Scholar 

Download references

Acknowledgments

The authors thank TE Connectivity, Ltd. for the partial funding of this research along with collaboration throughout the study. The authors also thank the Loewy Family Foundation for financially supporting this project and two of the authors (APV, as a Loewy Graduate Fellow, and WZM, through the Loewy Professorship at Lehigh University).

This material is based on research sponsored by the Air Force Research Laboratory under Agreement No. FA8650-12-2-7230 and by the Commonwealth of Pennsylvania, acting through the Department of Community and Economic Development, under Contract No. C000053981. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. Any opinions, views, findings, recommendations, and conclusions contained herein are those of the author(s) and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory, the U.S. Government, the Commonwealth of Pennsylvania, Carnegie Mellon University, or Lehigh University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Ventura.

Additional information

Manuscript submitted March 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, A.P., Wade, C.A., Pawlikowski, G. et al. Mechanical Properties and Microstructural Characterization of Cu-4.3 Pct Sn Fabricated by Selective Laser Melting. Metall Mater Trans A 48, 178–187 (2017). https://doi.org/10.1007/s11661-016-3779-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3779-x

Keywords

Navigation