Skip to main content

Advertisement

Log in

The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2017

This article has been updated

Abstract

Precipitation hardening copper alloy C70250 was selectively laser melted to successfully produce components around 98 pct dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. Mechanical testing found that peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 pct IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. After aging for 128 hours, there is a drop in yield strength to 546 MPa with an increase in conductivity to 43.2 pct IACS. Electron microscopy analysis revealed nanometer-scale silicon-rich oxide particles throughout the material that persist during aging. Deformation twinning is observed in the peak-age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging which account for the broad range of aging time where nearly the peak mechanical properties exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 13 November 2017

    In the Experimental Methods section, second paragraph, last sentence of the original article the value for the resistivity of pure copper is incorrect. The correct value is 1.7241 µΩ-cm.

References

  1. 1. Gibson I, Rosen D, Stucker B (2010) Additive Manufacturing Technologies, 1st ed. Springer, New York, NY, pp. 103-42.

    Book  Google Scholar 

  2. D. Bourell: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 1-18.

    Article  Google Scholar 

  3. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina: CIRP Ann., 2016, vol. 65, pp. 737-60.

    Article  Google Scholar 

  4. L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, and D.Q. Zhang: Int. J. Heat Mass Transfer, 2015, vol. 80, pp. 288-300.

    Article  Google Scholar 

  5. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.

    Article  Google Scholar 

  6. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo: J. Mater. Res. Technol., 2012, vol. 1, pp. 167-77.

    Article  Google Scholar 

  7. E. Yasa and J.P. Kruth: Procedia Eng., 2011, vol. 19, pp. 389–95.

    Article  Google Scholar 

  8. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, and Y. Shi: Front. Mech. Eng., 2015, vol. 10, pp. 111–25.

    Article  Google Scholar 

  9. L. Thijs, K. Kempen, J.P. Kruth, and J.V. Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809–19.

    Article  Google Scholar 

  10. B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  11. 11. Bormann T, Müller B, Schinhammer M, Kessler A, Thalmann P, Wild MD (2014) Mater. Charact. 94:189-202

    Article  Google Scholar 

  12. T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb, and M.J. Matthews: Acta Mater., 2017, vol. 128, pp. 197-206.

    Article  Google Scholar 

  13. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng: Mater. Des., 2016, vol. 108, pp. 308-18.

    Article  Google Scholar 

  14. A.A. Antonysamy, J. Meyer, and P.B. Prangnell: Mater. Charact., 2013, vol. 84, pp. 153-68.

    Article  Google Scholar 

  15. J.R. Davis: Copper and Copper Alloys, 1st ed., ASM International, Materials Park, OH, 2001.

    Google Scholar 

  16. D.M. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin: Mater. Chem. Phys., 2003, vol. 79, pp. 81-86.

    Article  Google Scholar 

  17. D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin: Mater. Sci. Eng. A, 2003, vol. A361, pp. 93-99.

    Article  Google Scholar 

  18. S.A. Lockyer and F.W. Noble: J. Mater. Sci., 1994, vol. 29, pp. 218-26.

    Article  Google Scholar 

  19. S.A. Lockyer and F.W. Noble: Mater. Sci. Technol., 1999, vol. 15, pp. 1147-53.

    Article  Google Scholar 

  20. T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, and C.L. Wu: Acta Mater., 2013, vol. 61, pp. 1210-19.

    Article  Google Scholar 

  21. A.P. Ventura, C.A. Wade, G. Pawlikowski, M. Bayes, M. Watanabe, and W.Z. Misiolek: Metall. Mater. Trans. A, 2017, vol. 48, pp. 178-87.

    Article  Google Scholar 

  22. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen: Mater. Sci. Eng. A, 2015, vol. 625, pp. 221-29.

    Article  Google Scholar 

  23. P. Stadelmann, JEMS-SAAS V 4.5028 (2017), http://www.jems-saas.ch. Accessed Feb. 2017.

  24. M. Watanabe and D.B. Williams: J. Microsc., 2006, vol. 221, pp. 89-109.

    Article  Google Scholar 

  25. V.C. Srivastava, A. Schneider, V. Uhlenwinkel, and K. Bauckhage: Mater. Sci. Tech., 2004, vol. 20, pp. 839-48.

    Article  Google Scholar 

  26. J.F. Wang, S.G. Jia, S.H. Chen, K.X. Song, P. Liu, and G.J. Yu: Adv. Mater. Res., 2011, vol. 197-198, pp. 1315-20.

    Article  Google Scholar 

  27. 27. Watanabe C, Hiraide H, Zhang Z, Monzen R (2005) J. Soc. Mater. Sci., Jpn. 54:717-23

    Google Scholar 

  28. S.O. Kasap: Principles of Electronic Materials and Devices, 3rd ed., McGraw-Hill, New York, NY, 2006, pp. 113-54.

    Google Scholar 

  29. J. Miyake and M.E. Fine: Acta Metall. Mater., 1992, vol. 40, pp. 733-41.

    Article  Google Scholar 

  30. S. Kou: Welding Metallurgy, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003, pp. 145-212.

    Google Scholar 

  31. Y.L. Jia, M.P. Wang, C. Chen, Q.Y. Dong, S. Wang, and Z. Li: J. Alloys Compd., 2013, vol. 557, pp. 147-51.

    Article  Google Scholar 

  32. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: Part 2 Diffraction, 2nd ed., Springer Science+Business Media, LLC, New York, NY, 2009, pp. 277-303.

    Book  Google Scholar 

  33. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., Taylor & Francis Group, LLC, Boca Raton, FL, 2009, pp. 140-235.

    Google Scholar 

  34. 34. DuPont JN (2011) Welding Fundamentals and Processes, Fundamentals of Weld Solidification. ASM International, Materials Park, OH, vol. 6A, pp. 96-114

    Google Scholar 

  35. T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, and G.J. Tatlock: Acta Mater., 2015, vol. 87, pp. 201-15.

    Article  Google Scholar 

  36. 36. Ellingham H (1944) J. Soc. Chem. Ind. Lond. 63:125-60

    Article  Google Scholar 

  37. Z. Sun, X. Tan, S.B. Tor, and W.Y. Yeong: Mater. Des., 2016, vol. 104, pp. 197-204.

    Article  Google Scholar 

  38. S. Semboshi, S. Sato, A. Iwase, and T. Takasugi: Mater. Charact., 2016, vol. 115, pp. 39-45.

    Article  Google Scholar 

  39. S.Z. Han, J. Lee, M. Goto, S.H. Lim, J.H. Ahn, S. Kim, and K. Kim: Philos. Mag. Lett., 2016, vol. 96, pp. 196-203.

    Article  Google Scholar 

  40. D.B. Williams and E.P. Butler: Int. Met. Rev., 1981, vol. 26, pp. 153-83.

    Article  Google Scholar 

  41. T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30-36.

    Article  Google Scholar 

  42. 42. Gladman T (1997) The Physical Metallurgy of Microalloyed Steels. Institute of Materials, London, vol. 615

    Google Scholar 

  43. E. Nembach: Particle Strengthening of Metals and Alloys, 1st ed., John Wiley & Sons, Inc., New York, NY, 1997, pp.63-91.

    Google Scholar 

  44. L.M. Cheng, W.J. Poole, J.D. Embury, and D.J. Lloyd: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2473-81.

    Article  Google Scholar 

  45. W.J. Poole, X. Wang, D.J. Lloyd, and J.D. Embury: Philos. Mag., 2005, vol. 85, pp. 3113-35.

    Article  Google Scholar 

  46. Kelly A, Nicholson RB (1971) Strengthening Methods in Crystals, 1st ed. Applied Science Publishers Ltd, Barking, Essex, GB, 1971, pp. 175-90

    Google Scholar 

  47. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171-273.

    Article  Google Scholar 

  48. U.F. Kocks: Strain Hardening and ‘Strain-Rate Hardening. ASTM STP 765, ASTM, 1982, pp. 121–38.

  49. Araki, W.J. Poole, E. Kobayashi, and T. Sato: Mater. Trans., 2014, vol. 55, pp. 501-05

    Article  Google Scholar 

  50. Rohatgi, K.S. Vecchio, and G.T. Gray III: Metall. Mater. Trans. A, 2001, vol. 32, pp. 135-45.

    Article  Google Scholar 

  51. M.A. Meyers, O. Vöhringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025-39.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank TE Connectivity, ltd. for the funding of this research along with collaboration throughout the study. The authors thank the Loewy Family Foundation for financially supporting this project and two of the authors, (Anthony P. Ventura) as a Loewy Graduate Fellow and (Wojciech Z. Misiolek) through the Loewy Professorship at Lehigh University. Lastly, the authors thank the W. M. Keck Foundation for financial support of Dr. Christopher J. Marvel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Ventura.

Additional information

Manuscript submitted May 9, 2017.

A correction to this article is available online at https://doi.org/10.1007/s11661-017-4395-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, A.P., Marvel, C.J., Pawlikowski, G. et al. The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si. Metall Mater Trans A 48, 6070–6082 (2017). https://doi.org/10.1007/s11661-017-4363-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4363-8

Navigation