Skip to main content
Log in

Grain Size Hardening Effects in Mg-Gd Solid Solutions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension–compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall–Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension–compression asymmetry is explained by the operation of \( \left\{ {10\bar{1}1} \right\} \) (contraction) twinning in the concentrated alloys in place of \( \left\{ {10\bar{1}2} \right\} \) (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of \( \left\{ {10\bar{1}1} \right\} \) twinning in the more concentrated alloys accounts for their lower k-value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.O. Hall: Proc. Physical Soc. London, 1951, vol. 64, pp. 747-752.

    Article  Google Scholar 

  2. N.J. Petch: J. Iron Steel Institute (London), 1953, vol. 174, pp. 25-28.

    Google Scholar 

  3. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. Metall. Soc. AIME, 1956, vol. 206, 589-593.

    Google Scholar 

  4. R.W. Armstrong: The yield and flow stress dependence on polycrystal grain size, in: T.N. Baker (ed.) Yield, flow and fracture of polycrystals, Applied Science Publishers, London, 1983, pp. 1-31.

    Google Scholar 

  5. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093-103.

    Article  Google Scholar 

  6. S.R. Agnew: in Advances in Wrought Magnesium Alloys, C. Bettles and M. Barnett, eds., Woodhead Publishing, Cambridge, 2012, pp. 63–104.

  7. C.H. Cáceres, G.E. Mann, and J.R. Griffiths: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1950-1959.

    Article  Google Scholar 

  8. J.H. Woodhead: in T.N. Baker (ed.) Yield, flow and fracture of polycrystals, Applied Science Publishers, London, 1983, pp. 225-233.

    Google Scholar 

  9. T.N. Baker: in T.N. Baker (ed.) Yield, flow and fracture of polycrystals, Applied Science Publishers, London, 1983, pp. 235-273.

    Google Scholar 

  10. U.F. Kocks: Metall. Trans., 1970, vol. 1, pp. 1121-1143.

    Google Scholar 

  11. H. Mecking: in: P. Haasen, V. Gerold, G. Kostorz (eds.) Strength of metals and alloys (ICSMA-5), Pergamon Press, New York, 1979, pp. 1573-1594.

    Chapter  Google Scholar 

  12. U.F. Kocks and D.G. Westlake: Trans. AIME, 1967, vol. 239, pp. 1107-1109.

    Google Scholar 

  13. T. Sato: Acta Crystall. Section A, 2005, vol. 61, pp. 39-50.

    Article  Google Scholar 

  14. P. Haasen: Physical Metallurgy, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  15. C.H. Cáceres and A. Blake: Physica Status Solidi (A), 2002, vol. 194, pp. 147-158.

    Article  Google Scholar 

  16. S. Abaspour and C.H. Cáceres: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1313-1321.

    Article  Google Scholar 

  17. S. Abaspour and C.H. Cáceres: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5972-5988.

    Article  Google Scholar 

  18. D.S. Gencheva, A.A. Katsnel’son, L.L. Rokhlin, V.M. Silonov, and F.A. Khavadzha: Fiz. metal. metalloved., 1981, vol. 51, pp. 788-793.

    Google Scholar 

  19. S. Henes and V. Gerold: Zeitschrift fur Metallkunde, 1962, vol. 53, pp. 703-708.

    Google Scholar 

  20. V.M. Silonov, E.V. Evlyukhina, and L.L. Rokhlin: Russian Physics J., 1966, vol. 39, pp. 622-625.

    Article  Google Scholar 

  21. N. Jha and A.K. Mishra: J. Alloys Compounds, 2001, vol. 329, pp. 224-229.

    Article  Google Scholar 

  22. American Society for Metals, Alloy Phase Diagrams Database™. http://www1.asminternational.org/asmenterprise/apd/.

  23. M. Qian, D.H. StJohn, and M.T. Frost: Mater. Sci. Forum, 2003, vols. 419-422, pp. 593-598.

    Article  Google Scholar 

  24. O. Muránsky, D.G. Carr, P. Sittner, and E.C. Oliver: Int. J. Plasticity, 2009, vol. 25, pp. 1107-1127.

    Article  Google Scholar 

  25. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Phil. Mag. A, 1999, vol. 79, pp. 1671-1696.

    Article  Google Scholar 

  26. S.Y. Lee and M.A. Gharghouri: Mater. Sci. Eng. A, 2013, vol. 572, pp. 98-102.

    Article  Google Scholar 

  27. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasticity, 2007, vol. 23, pp. 44-86.

    Article  Google Scholar 

  28. H. Qiao, S.R. Agnew, and P.D. Wu: Int. J. Plasticity, 2015, vol. 65, pp. 61-84.

    Article  Google Scholar 

  29. International Standard ISO/DIS 6892-1, Metallic Materials-Tensile Testing: Part 1 Method of Test at Room Temperature, 2009.

  30. C.H. Cáceres, T. Sumitomo, and M. Veidt: Acta Mater., 2003, vol. 51, pp. 6211-6218.

    Article  Google Scholar 

  31. G.E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Eng. A, 2007, vol. 456, pp. 138-146.

    Article  Google Scholar 

  32. G.W. Chang, S.Y. Chen, C. Zhou, X.D. Yue, and Y.H. Qi: Trans. Nonferrous Metals Soc. China, 2010, vol. 20, pp. 289-293.

    Article  Google Scholar 

  33. S. Xu, M.A. Gharghouri, and M. Sahoo: Adv. Engineering Mater., 2007, vol. 9, pp. 807-812.

    Article  Google Scholar 

  34. L. Gao, R.S. Chen, and E.H. Han: J.Alloys Compounds, 2009, vol. 481, pp. 379-384.

    Article  Google Scholar 

  35. E.W. Kelley, W.F. Hosford: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 654-661.

    Google Scholar 

  36. E.W. Kelley, W.F. Hosford: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 5-13.

    Google Scholar 

  37. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277-4289.

    Article  Google Scholar 

  38. L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, and P.K. Liaw: Mater. Sci. Engineering A, 2010, vol. 527, pp. 7057-7067.

    Article  Google Scholar 

  39. J. Zhang, M. Liu, Y. Dou, and G. Liu: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5499-507.

    Article  Google Scholar 

  40. F. Yang, F. Lv, X.M. Yang, S.X. Li, Z.F. Zhang, and Q.D. Wang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2231-2238.

    Article  Google Scholar 

  41. B.L. Wu, G. Wan, Y.D. Zhang, and C. Esling: Mater. Letters, 2010, vol. 64, pp. 636-639.

    Article  Google Scholar 

  42. N. Stanford, D. Atwell, and M.R. Barnett: Acta Mater., 2010, vol. 58, pp. 6773-6783.

    Article  Google Scholar 

  43. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7092-7098.

    Article  Google Scholar 

  44. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig: Scripta Mater., 2010, vol. 63, pp. 725-730.

    Article  Google Scholar 

  45. J.D. Robson, A.M. Twier, G.W. Lorimer, and P. Rogers: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7247-7256.

    Article  Google Scholar 

  46. N. Stanford: Mater. Sci. Eng. A, 2010, vol. 528, pp. 314-322.

    Article  Google Scholar 

  47. T. Wang, L. Jiang, R. Mishra, and J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4698-4709.

    Article  Google Scholar 

  48. A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1351-1356.

    Article  Google Scholar 

  49. A. Kelly and G.W. Groves: Phil. Mag. A, 1963, vol. 8, pp. 877-887.

    Article  Google Scholar 

  50. B. Li and E. Ma: Phys. Rev. Letters, 2009, vol. 103, 035503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Cáceres.

Additional information

Manuscript submitted August 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, D., Cáceres, C.H. & Griffiths, J.R. Grain Size Hardening Effects in Mg-Gd Solid Solutions. Metall Mater Trans A 47, 5401–5408 (2016). https://doi.org/10.1007/s11661-016-3686-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3686-1

Keywords

Navigation