Skip to main content

Advertisement

Log in

High Temperature Strength and Stress Relaxation Behavior of Dilute Binary Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Monotonic compression and stress relaxation tests were carried out on specimens of 6 cast binary alloys with (at. pct) 2.5 Al, 0.6 Sn, 2.2 Zn, 0.9 Nd, 0.8 Gd and 1.3 Y, and of a similarly cast AZ91D alloy for reference. The solute concentration of the binary alloys was kept deliberately low to limit precipitation hardening effects during the testing, done in the solution heat treated and quenched condition. Compression testing was carried out at 298 K, 373 K and 453 K (25 °C, 100 °C and 180 °C) for all of the alloys and at 493 K and 523 K (220 °C and 250 °C) for the Nd-, Gd- and Y- containing ones. Stress relaxation was done at 453 K (180 °C) at either a predetermined strain (0.05) or stress (150 MPa). The Mg-Al and the AZ91 alloys softened considerably above 373 K (100 °C). The rest of the alloys exhibited increasing linear strain hardening in compression and reduced stress relaxation, in the order Sn, Zn, Nd, Gd and Y, an indication of a progressively stable dislocation substructure, hence of an increasingly extended athermal regime in the strength-temperature relationship. The overall strain hardening behavior matches that of commercial alloys involving the same solutes at comparable or higher concentrations, and can be accounted for through the respective tendency of the solute atoms to develop short range order. This tendency is lowest for the near-random solid solution introduced by Al, and highest for Nd, Gd and Y, in agreement with their respective phase diagrams. The implications for creep resistant alloy selection and design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Strain hardening[22,24] due to the monotonic accumulation of dislocations when the obstacles are fixed in number and distance, e.g. grain boundaries, leads to parabolic hardening. Alternatively, when the spacing between obstacles decreases in proportion to the applied strain, e.g. through the densification of the forest of dislocations, the strain hardening is linear, with a gradient of about µ/200, where µ is the shear modulus. The former case accounts for a Hall–Petch type of hardening when the main obstacles are grain boundaries. The second case accounts for the linear hardening in stage II of deformation of single crystals at low temperatures, i.e. when, poly-slip is activated in polycrystals under conditions in which dynamic recovery is constrained (i.e. at sufficiently low temperatures).[25] The specific case of linear strain hardening of Mg polycrystals was discussed at length in Reference 23.

  2. See also the comments concerning Eq. [3] in the companion paper.[16]

References

  1. J.R. Terbush, N.D. Saddock, J.W. Jones, T.M. Pollock, Metallurgical and Materials Transactions A, 41 (2010) 2435-2442.

    Article  Google Scholar 

  2. [2] J.-F. Nie, Metallurgical and Materials Transactions A, 43 (2012) 3891-3939.

    Article  Google Scholar 

  3. [3] B.L. Mordike, Materials Science and Engineering A, 324 (2002) 103-112. http://dx.doi.org/10.1016/S0921-5093(01)01290-4

    Article  Google Scholar 

  4. [4] M.O. Pekguleryuz, A.A. Kaya, Advanced Engineering Materials, 5 (2003) 866-878.

    Article  Google Scholar 

  5. M. Pekguleryuz, M. Celikin, International Materials Reviews, 55 (2010) 197-217. http://dx.doi.org/10.1179/095066010X12646898728327

    Article  Google Scholar 

  6. [6] M.S. Dargusch, G.L. Dunlop, A.L. Bowles, K. Pettersen, P. Bakke, Metallurgical and Materials Transactions A, 35 (2004) 1905-1909.

    Article  Google Scholar 

  7. K. Maruyama, M. Suzuki, S. Hiroyuki, Metallurgical and Materials Transactions A, 33 (2002) 875-882.

    Article  Google Scholar 

  8. [8] I. Moreno, T. Nandy, J. Jones, J. Allison, T. Pollock, Scripta Materialia, 45 (2001) 1423-1429.

    Article  Google Scholar 

  9. [9] M.A. Gibson, X. Fang, C.J. Bettles, C.R. Hutchinson, Scripta Materialia, 63 (2010) 899-902. http://dx.doi.org/10.1016/j.scriptamat.2010.07.002

    Article  Google Scholar 

  10. [10] S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scripta Materialia, 63 (2010) 698-703. http://dx.doi.org/10.1016/j.scriptamat.2010.02.005

    Article  Google Scholar 

  11. [11] K.V. Yang, M.A. Easton, C.H. Caceres, Advanced Engineering Materials, 15 (2013) 302-307. http://dx.doi.org/10.1002/adem.201200188

    Article  Google Scholar 

  12. [12] B. Zhang, S. Gavras, A.V. Nagasekhar, C.H. Cáceres, M.A. Easton, Metallurgical and Materials Transactions A, 45 (2014) 1-12. http://dx.doi.org/10.1007/s11661-014-2416-9

    Google Scholar 

  13. [13] T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics, 17 (2009) 481-490. 10.1016/j.intermet.2008.12.009

    Article  Google Scholar 

  14. [14] K. Yang, C. Cáceres, M. Easton, Metallurgical and Materials Transactions A, 45 (2014) 4117-4128. http://dx.doi.org/10.1007/s11661-014-2326-x

    Article  Google Scholar 

  15. [15] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Materials Science and Engineering: A, 599 (2014) 204-211.

    Article  Google Scholar 

  16. S. Abaspour, C. Cáceres, Metallurgical and Materials Transactions A, 46 (2015) 5972-5988. http://dx.doi.org/10.1007/s11661-015-3128-5

    Article  Google Scholar 

  17. S. Abaspour and C. Cáceres: in Magnesium Technology, M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham, eds., The Minerals, Metals & Materials Society (TMS), San Diego, 2014, pp. 71–75.

  18. S. Abaspour and C.H. Caceres: in Magnesium Technology, N. Hort, S.N. Mathaudhu, N.R. Neelameggham, and M. Alderman, eds., The Minerals, Metals & Materials Society (TMS), San Antonio, 2013, pp. 17–20.

  19. [19] G.-w. Chang, S.-y. Chen, C. Zhou, X.-d. Yue, Y.-h. Qi, Transactions of Nonferrous Metals Society of China, 20 (2010) 289-293. http://dx.doi.org/10.1016/S1003-6326(09)60136-9

    Article  Google Scholar 

  20. [20] C.H. Caceres, G.E. Mann, J.R. Griffiths, Metallurgical and Materials Transactions A, 42 (2011) 1950-1959. http://dx.doi.org/10.1007/s11661-010-0599-2

    Article  Google Scholar 

  21. [21] S. Xu, M.A. Gharghouri, M. Sahoo, Advanced Engineering Materials, 9 (2007) 807-812.

    Article  Google Scholar 

  22. [22] D. Kuhlmann-Wilsdorf, Metallurgical and Materials Transactions, 35A (2004) 369-418.

    Article  Google Scholar 

  23. [23] C.H. Cáceres, P. Lukác, Philosophical Magazine A, 88 (2008) 977-989. http://dx.doi.org/10.1080/14786430801968611

    Article  Google Scholar 

  24. [24] U.F. Kocks, H. Mecking, Progress in Materials Science, 48 (2003) 171-273.

    Article  Google Scholar 

  25. H. Mecking: in Strength of Metals and Alloys (ICSMA-5), P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, NY, 1979, pp. 1573–94.

  26. [26] H. Suzuki, in: J C Fisher, W G Johnston, R Thomson, T Vreeland (Eds.) Dislocations and mechanical properties of crystals, John Wiley, New York, 1957, pp. 361-390.

    Google Scholar 

  27. [27] K. Sadananda, M.J. Marcinkowski, Journal of Applied Physics, 44 (1973) 1989- 1996. http://dx.doi.org/10.1063/1.1662504

    Article  Google Scholar 

  28. S. Gavras, S. Zhu, M.A. Gibson, M.A. Easton, and J.-F. Nie: in 9th International Conference on Magnesium alloys and their Applications, Karl-Ulrich Kainer Warren J. Poole, ed., Vancouver, 2012, pp. 757–764.

  29. T.J. Pike, B. Noble, Journal of the Less Common Metals, 30 (1973) 63-74. http://dx.doi.org/10.1016/0022-5088(73)90007-6

    Article  Google Scholar 

  30. L. Moreno, T. Nandy, J. Jones, J. Allison, and T. Pollock: in Magnesium Technology, H.I. Kaplan, ed., TMS, 2002, pp. 111–116

  31. [31] Z. Trojanová, P. Lukác, Journal of Materials Processing Technology, 162-163 (2005) 416-421.

    Article  Google Scholar 

  32. [32] S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Metallurgical and Materials Transactions A, 46 (2015) 1-12. http://dx.doi.org/10.1007/s11661-015-2946-9

    Google Scholar 

  33. [33] A.A. Luo, B.R. Powell, M.P. Balogh, Metallurgical and Materials Transactions A, 33 (2002) 567-574. http://dx.doi.org/10.1007/s11661-002-0118-1

    Article  Google Scholar 

  34. C.H. Cáceres, and A. Blake: Physica Status Solidi, 194 (a) (2002) 147–158.

  35. [35] R.F. Zhang, B.X. Liu, Applied Physics Letters, 81 (2002) 1219-1221. doi:http://dx.doi.org/10.1063/1.1499510

    Article  Google Scholar 

  36. [36] T. Wang, L. Jiang, R. Mishra, J. Jonas, Metallurgical and Materials Transactions A, 45 (2014) 4698-4709. http://dx.doi.org/10.1007/s11661-014-2371-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Cáceres.

Additional information

Manuscript submitted December 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaspour, S., Cáceres, C.H. High Temperature Strength and Stress Relaxation Behavior of Dilute Binary Mg Alloys. Metall Mater Trans A 47, 1313–1321 (2016). https://doi.org/10.1007/s11661-015-3292-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3292-7

Keywords

Navigation