Skip to main content
Log in

Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Atomic level thermodynamics arguments that account for the generally weak age hardening response while suggesting that extending the athermal regime through short-range order (SRO) is a most feasible path to increasing the creep strength of many current alloys are presented. The tendency, or otherwise, of many solutes to develop SRO in dilute solid solutions rationalizes a number of observations in current multicomponent Mg alloys, and in particular the retention of linear strain hardening at high temperatures, while it disputes the viability of several micromechanisms often considered active, such as pinning of edge dislocations by mobile solute clouds, dynamic precipitation of thermally stable precipitates, or atomic size effects on the diffusivity. Potential solutes are sorted out and ranked based on the sign and value of the enthalpy of mixing of binary solid solutions using the Miedema phenomenological scheme. Due to their large negative energy of mixing and reasonable solubility (>1 at. pct) at ~473 K (~200 °C), Y and Gd appear as the best candidates to increase the creep strength through SRO, followed by Nd and Ca, in close agreement with data reported in the literature. The feasibility of enhancing the age hardening response through homogeneously nucleated, coherent precipitates, in some cases despite the negative energy of mixing of the alloy, or via internally ordered precipitates mimicking those present in Mg-Th alloys is considered by making parallels with the Al-Zn and the Al-Cu alloy systems. The possible optimization of the strengthening of high pressure die cast alloys combining SRO and intergranular eutectics or of heat-treatable cast alloys through internally ordered precipitates and SRO is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The alleged valence mechanism is supposed to increase the yield strength of Mg-RE solutions through the introduction of a covalent component in the atomic bonding. This model, however, also predicts that Zn should harden Mg at the same (low) rate of Al, in contradiction with the experimental results of Figure 3.

  2. SRO is expected in Mg-Al as well, but its strength is bounded by the low melting point of the Mg17Al12 intermetallic.[31]

  3. The low values of the Hall-Petch friction stress in Mg-Zn,[48] and which are also accounted for by SRO effects on twinning, led some authors[32,37] to conclude that solid solution by Zn is below that of the RE, also against what Figure 3 shows.

  4. It has been recently pointed out [49] that the RE increase the ductility more than Zn, which is not correct as can be seen by comparing the data of References 3133. That the alloys are more ductile than the pure Mg metal is yet another classic conclusion,[5053] stemming in this case from the solid solution softening of the prism planes, which being a general solid solution effect should apply equally well to all kinds of solutes, including the RE.

  5. Mg-Sn is known to develop SRO,[42] hence its hardening rate should match that of Mg-Zn, but recent experiments[34] suggest otherwise, as shown by Figure 3. It is noted however that the specimens used in those experiments had only 4 to 5 grains across the cross sections, questioning the validity of the data for polycrystals.

  6. A number of studies, e.g., Refs. [86], [90], [91] based their conclusions on specimens tested in the (gravity) as-cast condition. Cast microstructures are strongly geometry dependent, and since coring creates concentration gradients and disproportionate amounts of interdendritic eutectics, as-cast specimens seem hardly suitable to properly quantify solid solution strengthening, or any other micromechanisms, for that matter. This criticism does not apply to studies based on HPDC specimens, since in those cases what is measured, rather than material properties, are the properties of the casting cross section.[54]

  7. The formation of the so called RE texture in Mg-RE Mg-Y and Mg-Ca alloys has also been ascribed to atomic size/solute segregation effects.[55,105,106]

  8. This criticism can also be levered to the hypothesis that co-segregation of Gd and Zn atoms to form dimers in dilute Mg-Gd-Zn alloys blocks the edge components of mobile dislocations on the basal plane.[39] Alternatively, it may be argued that the co-segregation of Zn and Gd reinforces the SRO of the dilute Mg-Gd alloy, hence the hardening effect on both the screw and the edge components of mobile dislocations. (It is noted that Zn additions have no effects in concentrated Mg-Gd alloys.[1])

  9. Using the Miedema-Niessen model, Bakker[110] showed that for solutes much smaller than the host, the reduction of effective atomic volume due to the charge transfer enables a significant fraction of the solute atoms to fast-diffuse as interstitials, i.e., the solute exhibits on average a faster than expected diffusion rate. However, when the difference in size between solute and host is less than the Hume-Rothery limit of ±15 pct the solute behaves strictly as substitutional and the diffusion is normally slow and size independent. Considering the similar atomic radius and c/a ratio of Mg and Zr[111] the diffusivity behavior of any solutes can in principle be expected to be similar for both hosts. Tendler and Abriata’s results also suggest that for solutes larger than the 15 pct limit, increased rather than decreased diffusivity can be expected, further denying the possibility of slower diffusivity of the larger RE, or any other larger substitutional solute, for that matter.

  10. Solutes that lower the stacking fault energy are expected to have similar effects.[119,129] Possible RE effects on the SFE of Mg at the nano-scale have also been considered in recent work.[49,130]

  11. Deep eutectics and the development of SRO already in the liquid correlate with the tendency to form metallic glasses in many Mg alloys.[40]

  12. Pettifor’s Quantum Mechanics analysis[142] identified some contradiction in the fundamentals, but those do not detract from the practical value of the scheme as a (powerful) sorting and ranking tool.

  13. For consistency with the original formulation, non-SI units (eV and d.u.) are used for the scheme.

  14. Diagrams similar to that of Fig. 8 can be seen in Reference 144 for Fe, in Reference 28 for Mg and a generic one in Reference 138.

  15. Save for Ni and B, the sorting of solutes in Figure 8 is consistent with the respective phase diagrams as per Figures 6(a) through (c). The mismatching cases are discussed in the Appendix.

  16. Note that elements on the south sector are larger in size than Mg, something that led to the assumptions concerning atomic size effects on texture formation (see footnote ¶) and diffusivity at high temperature.

References

  1. K. Maruyama, M. Suzuki, and S. Hiroyuki, Metallurgical and Materials Transactions A, 33A (2002) 875-882.

    Article  Google Scholar 

  2. L. Sturkey, J.B. Clark, Journal of the Institute of Metals, 88 (1959) 177-181.

    Google Scholar 

  3. J.B. Clark, Acta Metallurgica, 13 (1965) 1281-1289.

    Article  Google Scholar 

  4. J.B. Clark, Transactions of Japan Institute of Metals, 9 Supplement (1968) 354-355.

    Google Scholar 

  5. J. van der Planken, A. Deruyttere, Acta Metallurgica, 17 (1969) 451-454.

    Article  Google Scholar 

  6. G. Mima, Y. Tanaka, Transactions of Japan Institute of Metals, 12 (1971) 323-328.

    Article  Google Scholar 

  7. C. Bettles, M. Gibson, Advanced Engineering Materials, 5 (2003) 859-865. http://dx.doi.org/10.1002/adem.200310103

    Article  Google Scholar 

  8. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metallurgica Sinica (English Letters), 21 (2008) 313-328.

    Article  Google Scholar 

  9. L.Y. Wei, G.L. Dunlop, H. Westengen, Metallurgical and Materials Transactions A, 26A (1995) 1705-1716.

    Article  Google Scholar 

  10. R. Wilson, C. Bettles, B.C. Muddle, J.F. Nie, Materials Science Forum, 419 (2003) 267-272.

    Article  Google Scholar 

  11. B. Smola, I. Stulıková, F. Von Buch, B. Mordike, Materials Science and Engineering A, 324 (2002) 113-117. http://dx.doi.org/10.1016/S0921-5093(01)01291-6

    Article  Google Scholar 

  12. B.L. Mordike, Materials Science and Engineering A, 324 (2002) 103-112. http://dx.doi.org/10.1016/S0921-5093(01)01290-4

    Article  Google Scholar 

  13. J.-F. Nie, Metallurgical and Materials Transactions A, 43 (2012) 3891-3939.

    Article  Google Scholar 

  14. R. De Luca, J.G. Byrne, Acta Metallurgica, 13 (1965) 1187-1195.

    Article  Google Scholar 

  15. C.R. Hutchinson, J.F. Nie, S. Gorsse, Metallurgical and Materials Transactions A, 36 (2005) 2093-2105.

    Article  Google Scholar 

  16. M. Pekguleryuz, M. Celikin, International Materials Reviews, 55 (2010) 197-217. http://dx.doi.org/10.1179/095066010X12646898728327

    Article  Google Scholar 

  17. L.B. Duffy, Foundry Trade Journal, 165 (1991) 319-321.

    Google Scholar 

  18. C.H. Cáceres, D.M. Rovera, Journal of Light Metals, 1/3 (2001) 151-156.

    Article  Google Scholar 

  19. R. Khosrhoshahi: in Proceedings of the Third International Magnesium Conference, G.W. Lorimer ed., Manchester, 1996, pp. 241–56

  20. I.J. Polmear, Light Alloys,3rd ed., Edward Arnold, London, 1995, pp. 223-227.

    Google Scholar 

  21. S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, and M.A. Gibson: Metall. Mater. Trans. A, 2015, 1–12. DOI:10.1007/s11661-015-2946-9

  22. C.R. Hutchinson, S.P. Ringer, Metallurgical and Materials Transactions A, 31 (2000) 2721-2733.

    Article  Google Scholar 

  23. I. Polmear, Materials Forum, 28 (2004) 1-14.

    Google Scholar 

  24. K.E. Nelson, Transactions of the American Foundrymen’s Society, 67 (1959) 610-613.

    Google Scholar 

  25. Q. Han, B.K. Kad, S. Viswanathan, Philosophical Magazine, 84 (2004) 3843-3860.

    Article  Google Scholar 

  26. A.R. Miedema, F.R. de Boer, R. Boom, Calphad, 1 (1977) 341-359. http://dx.doi.org/10.1016/0364-5916(77)90011-6

    Article  Google Scholar 

  27. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1989.

    Google Scholar 

  28. A.R. Miedema, Journal of the Less Common Metals, 32 (1973) 117-136. 10.1016/0022-5088(73)90078-7

    Article  Google Scholar 

  29. A.R. Miedema, R. Boom, F.R. De Boer, Journal of the Less Common Metals, 41 (1975) 283-298. http://dx.doi.org/10.1016/0022-5088(75)90034-x

    Article  Google Scholar 

  30. S. Abaspour and C. Cáceres: Metall. Mater. Trans. A, 2015. DOI:10.1007/s11661-015-3128-5.

  31. C.H. Cáceres, A. Blake, Physica Status Solidi, 194 (2002) 147-158.

    Article  Google Scholar 

  32. L. Gao, R.S. Chen, E.H. Han, Journal of Alloys and Compounds, 481 (2009) 379-384. http://dx.doi.org/10.1016/j.jallcom.2009.02.131

    Article  Google Scholar 

  33. L. Gao, R.S. Chen, E.H. Han, Journal of Alloys and Compounds, 472 (2009) 234-240.

    Article  Google Scholar 

  34. B.Q. Shi, R.S. Chen, W. Ke, Journal of Alloys and Compounds, 509 (2011) 3357-3362.

    Article  Google Scholar 

  35. T. Hassel, F. Bach, and C. Krause: in Proceeding of the 7th International Conference on Mg Alloys & Their Applications, K.U. Kainer, ed., Dresden, 2007, pp. 789–95.

  36. S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, T. Mohri, Materials Transactions, 49 (2008) 952-956.

    Article  Google Scholar 

  37. I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Materialia, 75 (2014) 287-296.

    Article  Google Scholar 

  38. K. Chen, K. Boyle, Metallurgical and Materials Transactions A, 40 (2009) 2751-2760. http://dx.doi.org/10.1007/s11661-009-9954-6

    Article  Google Scholar 

  39. J. Nie, K. Oh-Ishi, X. Gao, K. Hono, Acta Materialia, 56 (2008) 6061-6076.

    Article  Google Scholar 

  40. P. Haasen: Physical Metallurgy, Cambridge University Press, Cambridge, 1996, Chapter 4 and 5

  41. D.S. Gencheva, A.A. Katsnel’son, L.L. Rokhlin, V.M. Silonov, F.A. Khavadzha, Fiz. metal. metalloved., 51 (1981) 788-793.

    Google Scholar 

  42. S. Henes, V. Gerold, Zeitschrift fur Metallkunde, 53 (1962) 703-08.

    Google Scholar 

  43. V.M. Silonov, E.V. Evlyukhina, L.L. Rokhlin, Russian Physics Journal, 39 (1996) 622-625.

    Article  Google Scholar 

  44. L.A. Safronova, A.A. Katsnel’son, S.V. Sveshnikov, Y.M. L’Vov, Fiz. metal. metalloved., 43 (1977) 76-80.

    Google Scholar 

  45. N. Jha, A.K. Mishra, Journal of Alloys and Compounds, 329 (2001) 224-229.

    Article  Google Scholar 

  46. A. Boos, S. Steeb, Physics Letters A, 63 (1977) 333-334. http://dx.doi.org/10.1016/0375-9601(77)90921-5

    Article  Google Scholar 

  47. M. Nishijima, K. Hiraga, Materials Transactions, 48 (2007) 10-15.

    Article  Google Scholar 

  48. C.H. Caceres, G.E. Mann, J.R. Griffiths, Metallurgical and Materials Transactions A, 42 (2011) 1950-1959. http://dx.doi.org/10.1007/s11661-010-0599-2

    Article  Google Scholar 

  49. S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Acta Materialia, 70 (2014) 92-104.

    Article  Google Scholar 

  50. A. Akhtar, E. Teghtsoonian, Materials Transactions (JIM), 9, supplement (1968) 692-697.

    Google Scholar 

  51. A. Akhtar, E. Teghtsoonian, Acta Metallurgica, 17 (1969) 1339-1349.

    Article  Google Scholar 

  52. A. Akhtar, E. Teghtsoonian, Acta Metallurgica, 17 (1969) 1351-1356.

    Article  Google Scholar 

  53. A. Akhtar, E. Teghtsoonian, Philosophical Magazine, 25 (1972) 897-916.

    Article  Google Scholar 

  54. K. Yang, C. Cáceres, M. Easton, Metallurgical and Materials Transactions A, 45 (2014) 4117-4128. http://dx.doi.org/10.1007/s11661-014-2326-x

    Article  Google Scholar 

  55. N. Stanford, Materials Science and Engineering A, 528 (2010) 314-322.

    Article  Google Scholar 

  56. M. Salahshoor, Y. Guo, Materials, 5 (2012) 135.

    Article  Google Scholar 

  57. J.B. Clark, Acta Metallurgica, 16 (1968) 141-152.

    Article  Google Scholar 

  58. J.F. Nie, B.C. Muddle: in Materials 98, Institute of Materials Engineering Australasia, Melbourne, M. Ferry ed., 1998, pp. 567-571.

    Google Scholar 

  59. J.W. Martin, Micromechanisms in particle hardened alloys, Cambridge University Press, Cambridge, 1980, pp.50-64.

    Google Scholar 

  60. C. Wolverton, Philosophical Magazine Letters, 79 (1999) 683-690.

    Article  Google Scholar 

  61. C. Mendis, C. Bettles, M. Gibson, S. Gorsse, C. Hutchinson, Philosophical Magazine Letters, 86 (2006) 443-456.

    Article  Google Scholar 

  62. C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Materials Science & Engineering A, 435 (2006) 163-171.

    Article  Google Scholar 

  63. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Journal of Alloys and Compounds, 440 (2007) 122-126.

    Article  Google Scholar 

  64. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, K. Hono, Materials Science and Engineering: A, 566 (2013) 22-29. http://dx.doi.org/10.1016/j.msea.2012.12.041

    Article  Google Scholar 

  65. M.X. Zhang, P.M. Kelly, Acta Materialia, 53 (2005) 1085-1096.

    Article  Google Scholar 

  66. N. Balasubramani, A. Srinivasan, U.T.S. Pillai, B.C. Pai, Materials Science and Engineering: A, 457 (2007) 275-281. http://dx.doi.org/10.1016/j.msea.2006.12.132

    Article  Google Scholar 

  67. A. Srinivasan, U.T.S. Pillai, B.C. Pai, Materials Science and Engineering A, 527 (2010) 6543-6550. http://dx.doi.org/10.1016/j.msea.2010.07.020

    Article  Google Scholar 

  68. A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, B.C. Pai, Materials Science and Engineering A, 527 (2010) 1395-1403. http://dx.doi.org/10.1016/j.msea.2009.10.008

    Article  Google Scholar 

  69. G. Feng and H. Yu: International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), IEEE, Harbin, Heilongjiang, 2011, pp. 4763–65

  70. T.J. Pike, B. Noble, Journal of the Less Common Metals, 30 (1973) 63-74. http://dx.doi.org/10.1016/0022-5088(73)90007-6

    Article  Google Scholar 

  71. K. Máthis, J. Gubicza, N.H. Nam, Journal of Alloys and Compounds, 394 (2005) 194-199. http://dx.doi.org/10.1016/j.jallcom.2004.10.050

    Article  Google Scholar 

  72. A.A. Luo: in Magnesium Technology, H.I. Kaplan, ed., TMS, Seattle, 2002, pp. 42–48

  73. M.S. Dargusch, G.L. Dunlop, A.L. Bowles, K. Pettersen, P. Bakke, Metallurgical and Materials Transactions A, 35 (2004) 1905-1909.

    Article  Google Scholar 

  74. Y. Guangyin, S. Yangshan, Z. Weiming, Journal of Materials Science Letters, 18 (1999) 2055-2057.

    Article  Google Scholar 

  75. S.L. Couling: Metals Engineering Quarterly, (1972), pp. 7–13.

  76. G.S. Foerster: Metals Engineering Quarterly, (1973), pp. 19–22.

  77. I.A. Anyanwu, S. Kamado, Y. Kojima, Materials Transactions, 42 (2001) 1212-1218.

    Article  Google Scholar 

  78. A. Luo, Materials Science Forum, 419-422 (2003) 57-66.

    Article  Google Scholar 

  79. M.O. Pekguleryuz, A.A. Kaya, Advanced Engineering Materials, 5 (2003) 866-878.

    Article  Google Scholar 

  80. B. Mordike, I. Stulikova, B. Smola, Metallurgical and Materials Transactions A, 36 (2005) 1729-1736. http://dx.doi.org/10.1007/s11661-005-0037-z

    Article  Google Scholar 

  81. B. Smola, I. Stulíková, J. Pelcová, B.L. Mordike: in Proceedings of the 6th International Conference-Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley, Wolfsburg, 2006, pp. 43–48

  82. M.A. Gibson, X. Fang, C.J. Bettles, C.R. Hutchinson, Scripta Materialia, 63 (2010) 899-902. http://dx.doi.org/10.1016/j.scriptamat.2010.07.002

    Article  Google Scholar 

  83. J.R. Terbush, N.D. Saddock, J.W. Jones, T.M. Pollock, Metallurgical and Materials Transactions A, 41 (2010) 2435-2442.

    Article  Google Scholar 

  84. S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Materials Transactions, 45 (2004) 1266-1271.

    Article  Google Scholar 

  85. L. Moreno, T. Nandy, J. Jones, J. Allison, T. Pollock: in Magnesium Technology, H.I. Kaplan, ed., TMS, 2002, pp. 111–16.

  86. Y. Zhang, L. Yang, J. Dai, J. Ge, G. Guo, and Z. Liu: Mater. Design, 63 (2014) 439-445. doi:10.1016/j.matdes.2014.06.027

    Article  Google Scholar 

  87. F. Czerwinski (2008) Magnesium Injection Molding, Springer, New York Inc, 2008.

    Book  Google Scholar 

  88. G. Nayyeri, R. Mahmudi, F. Salehi (2010) Mater. Sci. Eng. A 527: 5353-5359. doi:10.1016/j.msea.2010.05.040

    Article  Google Scholar 

  89. R. Alizadeh, R. Mahmudi, Journal of Alloys and Compounds, 509 (2011) 9195-9199.

    Article  Google Scholar 

  90. J. Bai, Y. Sun, F. Xue, S. Xue, J. Qiang, T. Zhu, Journal of Alloys and Compounds, 437 (2007) 247-253.

    Article  Google Scholar 

  91. B.-G. Moon, B.-S. You, Y.-D. Hahn, Current Nanoscience, 10 (2014) 108-113.

    Article  Google Scholar 

  92. S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scripta Materialia, 63 (2010) 698-703.

    Article  Google Scholar 

  93. W. Xu, Y. Zhang, J. TerBush, L.-M. Peng, W.-J. Ding, J.-F. Nie, Metallurgical and Materials Transactions A, 45 (2014) 4103-4116. http://dx.doi.org/10.1007/s11661-014-2335-9

    Article  Google Scholar 

  94. M. Lentz, M. Klaus, R. Coelho, N. Schaefer, F. Schmack, W. Reimers, B. Clausen, Metallurgical and Materials Transactions A, 45 (2014) 5721-5735.

    Article  Google Scholar 

  95. M. Suzuki, H. Sato, K. Maruyama, H. Oikawa, Materials Science and Engineering A, 252 (1998) 248-255.

    Article  Google Scholar 

  96. W.P. Sun, J.J. Jonas, Acta Metallurgica et Materialia, 42 (1994) 283-92.

    Article  Google Scholar 

  97. S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, T.B. Abbott, Scripta Materialia, 58 (2008) 477-480. http://dx.doi.org/10.1016/j.scriptamat.2007.10.041

    Article  Google Scholar 

  98. L. Gao, R. Chen, and E. Han: in Magnesium Technology, S.R. Agnew, E.A. Nyberg, N.R. Neelameggham and M.O. Pekguleryuz, eds., TMS, San Francisco, 2009, pp. 269–72

  99. D. Choudhuri, D. Jaeger, M.A. Gibson, R. Banerjee, Scripta Materialia, 86 (2014) 32-35.

    Article  Google Scholar 

  100. C. Wang, Y. Xu, and E. Han: J. Metall., 2012. DOI:10.1155/2012/674573

  101. X.Y. Fang, D.Q. Yi, J.F. Nie, Metallurgical and Materials Transactions A, 40 (2009) 2761-2771.

    Article  Google Scholar 

  102. N. Stanford, D. Atwell, M.R. Barnett, Acta Materialia, 58 (2010) 6773-6783. http://dx.doi.org/10.1016/j.actamat.2010.09.003

    Article  Google Scholar 

  103. C. Corby, C.H. Cáceres, P. Lukác, Materials Science and Engineering A, 387-389 (2004) 22-24.

    Article  Google Scholar 

  104. Z. Trojanova, C.H. Caceres, Scripta Materialia, 56 (2007) 793-796.

    Article  Google Scholar 

  105. T. Wang, L. Jiang, R. Mishra, J. Jonas, Metallurgical and Materials Transactions A, 45 (2014) 4698-4709. http://dx.doi.org/10.1007/s11661-014-2371-5

    Article  Google Scholar 

  106. D. Griffiths, Materials Science and Technology, 31 (2015) 10-24.

    Article  Google Scholar 

  107. L.J. Cuddy, W.C. Leslie, Acta Metallurgica, 20 (1972) 1157-1167.

    Article  Google Scholar 

  108. A. Couret, D. Caillard, Acta Metallurgica, 33 (1985) 1447-1454.

    Article  Google Scholar 

  109. R. Tendler, J.P. Abriata, Journal of Nuclear Materials, 150 (1987) 251-258. http://dx.doi.org/10.1016/0022-3115(87)90001-8

    Article  Google Scholar 

  110. H. Bakker, Journal of the Less Common Metals, 105 (1985) 129-138.

    Article  Google Scholar 

  111. P.G. Partridge, Metallurgical Reviews, 12 (1967) 169-194.

    Google Scholar 

  112. R. Brouwer, J. Rector, N. Koeman, R. Griessen, Physical Review B, 40 (1989) 3546.

    Article  Google Scholar 

  113. L. Sturkey: Trans. Met. Soc. AIME, 218, 1960

  114. J. Mushovic and N. Stoloff: in International Conference on the Strength of Metals and Alloys, Tokyo, 1968, p. 24.

  115. D. Amberger, P. Eisenlohr, M. Göken, Acta Materialia, 60 (2012) 2277-2289.

    Article  Google Scholar 

  116. K.V. Yang, C.H. Caceres, A.V. Nagasekhar, and M.A. Easton: Mater. Sci. Eng. A, 2012, vol. 542, pp. 49–55. DOI:10.1016/j.msea.2012.02.029.

    Article  Google Scholar 

  117. B. Zhang, S. Gavras, A.V. Nagasekhar, C.H. Cáceres, and M.A. Easton (2014) Metall. Mater. Trans. A, 7: 1–12. doi:10.1007/s11661-014-2416-9

    Google Scholar 

  118. B. Zhang, A.V. Nagasekhar, T. Sivarupan, C.H. Caceres, Advanced Engineering Materials, 15 (2013) 1059-1067.

    Article  Google Scholar 

  119. D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, J.A. Wert, Scripta Metallurgica et Materialia, 31 (1994) 729-734.

    Article  Google Scholar 

  120. D. Hull, D.J. Bacon (1984) Introduction to Dislocations. Pergamon Press: Oxford, p. 214.

    Google Scholar 

  121. A. Seeger, in: J. C. Fisher, W. G. Johnston, R. Thomson, T. Vreeland (Eds.) Dislocations and mechanical properties of crystals, Chapman and Hall, London, 1957, pp. 243-329.

    Google Scholar 

  122. C.G. Schmidt, A.K. Miller, Acta Metallurgica, 30 (1982) 615-625.

    Article  Google Scholar 

  123. F.R.N. Nabarro, H.L. de Villiers (1995) The Physics of Creep. Taylor and Francis, London, 1995.

    Google Scholar 

  124. H. Suzuki, in: J C Fisher, W G Johnston, R Thomson, T Vreeland (Eds.) Dislocations and mechanical properties of crystals, John Wiley, New York, 1957, pp. 361-390.

    Google Scholar 

  125. C.H. Cáceres, P. Lukác, Philosophical Magazine A, 88 (2008) 977-989. http://dx.doi.org/10.1080/14786430801968611

    Article  Google Scholar 

  126. H. Mecking, U.F. Kocks, Acta Metallurgica, 29 (1981) 1865-1875.

    Article  Google Scholar 

  127. A. Jain, S.R. Agnew, Materials Science and Engineering, 462 (2007) 29-36. http://dx.doi.org/10.1016/j.msea.2006.03.160

    Article  Google Scholar 

  128. Y. Chino, M. Kado, T. Ueda, M. Mabuchi, Metallurgical and Materials Transactions A, 42 (2011) 1965-1973.

    Article  Google Scholar 

  129. U.F. Kocks, H. Mecking, Progress in Materials Science, 48 (2003) 171-273.

    Article  Google Scholar 

  130. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Materials Research Letters, 1 (2013) 61-66.

    Article  Google Scholar 

  131. Z. Trojanová, P. Lukác, Journal of Materials Processing Technology, 162-163 (2005) 416-421.

    Article  Google Scholar 

  132. J.C. Fisher, Acta Metallurgica, 2 (1954) 9-10.

    Article  Google Scholar 

  133. T.C. Tiearney, N.J. Grant, Metallurgical and Materials Transactions A, 13 (1982) 1827-1836. http://dx.doi.org/10.1007/bf02647839

    Article  Google Scholar 

  134. S. Müller, L.W. Wang, A. Zunger, C. Wolverton, Physical Review B, 60 (1999) 16448-16462.

    Article  Google Scholar 

  135. W. Hume-Rothery, Atomic Theory, Institute of Metals, London, 1946.

    Google Scholar 

  136. C. Wolverton, V. Ozolin, A. Zunger, Journal of Physics: Condensed Matter, 12 (2000) 2749-2768.

    Google Scholar 

  137. J.S. Chun, J.G. Byrne, Journal of Materials Science, 4 1969 861-872.

    Article  Google Scholar 

  138. K.C. Russell: Kinetic Processes in Advanced Alloys, 1989 http://www.dtic.mil/dtic/tr/fulltext/u2/a212049.pdf

  139. R.F. Zhang, S.H. Sheng, B.X. Liu, Chemical Physics Letters 442 (2007) 511.

    Article  Google Scholar 

  140. J.H. Zhu, C.T. Liu, L.M. Pike, P.K. Liaw, Intermetallics, 10 (2002) 579-595. http://dx.doi.org/10.1016/S0966-9795(02)00030-4

    Article  Google Scholar 

  141. X.-Q. Chen, W. Wolf, R. Podloucky, P. Rogl, Intermetallics, 12 (2004) 59-62. http://dx.doi.org/10.1016/j.intermet.2003.07.003

    Article  Google Scholar 

  142. D.G. Pettifor: in Solid State Physics, E. Henry and T. David, eds., Academic Press, 1987, pp. 43–92

  143. Y.M. Zhang, J.R.G. Evans, Y. Shoufeng, The Journal of Crystallization Physics and Chemistry, 1 (2010) 103-119.

    Google Scholar 

  144. A.R. Miedema, P.F. de Châtel, F.R. de Boer: Physica B+C, 100, 1980, pp. 1–28. DOI:10.1016/0378-4363(80)90054-6

  145. A.R. Miedema, F.R. Boer, R. Boom (1981) Physica 103: 67–81. doi10.1016/0378-4363(81)91003-2:

    Article  Google Scholar 

  146. A.R. Miedema, Physica B: Condensed Matter, 182 (1992) 1-17. http://dx.doi.org/10.1016/0921-4526(92)90565-A

    Article  Google Scholar 

  147. http://www1.asminternational.org/asmenterprise/apd/.

  148. C. Bettles, M. Gibson, K. Venkatesan, Scripta Materialia, 51 (2004) 193-197.

    Article  Google Scholar 

  149. Q. Wang, W. Chen, W. Ding, Y. Zhu, M. Mabuchi, Metallurgical and Materials Transactions A, 32 (2001) 787-794. http://dx.doi.org/10.1007/s11661-001-1013-x

    Article  Google Scholar 

  150. C.H. Caceres, and S. Abaspour: in Magnesium Technology, S.N. Mathaudhu N. Hort, N.R. Neelameggham and M. Alderman ed., TMS, Texas, 2013, pp. 225–30.

  151. P.A. Flinn, Acta Metallurgica, 6 (1958) 631-35.

    Article  Google Scholar 

  152. P. Chen, D.-L. Li, J.-X. Yi, L. Wen, B.-Y. Tang, L.-M. Peng, W.-J. Ding, Solid State Sciences, 11 (2009) 2156-2161.

    Article  Google Scholar 

  153. L. Gao, J. Zhou, Z. Sun, R. Chen, E. Han, Chinese Science Bulletin, 56 (2011) 1038-1042. http://dx.doi.org/10.1007/s11434-010-4052-0

    Article  Google Scholar 

  154. H. Zhou, W. Xu, W. Jian, G. Cheng, X. Ma, W. Guo, S. Mathaudhu, Q. Wang, and Y. Zhu: Philos. Mag., 2014, p. 1–7.

  155. G.V. Raynor: The Physical Metallurgy of Magnesium and Its Alloys, Pergamon, 1959

  156. M.F. Ashby: Materials Selection in Mechanical Design, 4th ed., Butterworth-Heinemann, Amsterdam, chap. 7, 2005.

  157. A.A. Luo, B.R. Powell, M.P. Balogh, Metallurgical and Materials Transactions A, 33 (2002) 567-574. http://dx.doi.org/10.1007/s11661-002-0118-1

    Article  Google Scholar 

  158. X. Gu, X. Xie, N. Li, Y. Zheng, L. Qin, Acta Biomaterialia, 8 (2012) 2360-2374.

    Article  Google Scholar 

  159. B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Materials Science and Engineering: A, 599 (2014) 204-211.

    Article  Google Scholar 

  160. T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics, 17 (2009) 481-490. http://dx.doi.org/10.1016/j.intermet.2008.12.009

    Article  Google Scholar 

  161. S. Gavras, S. Zhu, M.A. Gibson, M.A. Easton, and J.-F. Nie: in 9th International Conference on Magnesium alloys and their Applications, K.-U. Kainer, W.J. Poole ed., Vancouver, 2012.

  162. B. Smola, I. Stulíková, J. Pelcová, and B.L. Mordike, J Alloys Compd, 378 (2004) 196–201. doi:10.1016/j.jallcom.2003.10.099

    Article  Google Scholar 

  163. C. Wolverton, Acta Materialia, 49 (2001) 3129-3142.

    Article  Google Scholar 

  164. J. Geng, X. Gao, X.Y. Fang, J.F. Nie, Scripta Materialia, 64 (2011) 506-509. http://dx.doi.org/10.1016/j.scriptamat.2010.11.027

    Article  Google Scholar 

  165. X. Gao, J. Nie, Scripta Materialia, 58 (2008) 619-622.

    Article  Google Scholar 

  166. Y. Zhu, A. Morton, J. Nie, Scripta Materialia, 58 (2008) 525-528.

    Article  Google Scholar 

  167. A. Issa, J.E. Saal, C. Wolverton, Acta Materialia, 65 (2014) 240-250. http://dx.doi.org/10.1016/j.actamat.2013.10.066

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Yanlu Huang (South China University of Technology) and Uday Chakkingal (IIT Madras) for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Cáceres.

Additional information

Manuscript submitted December 5, 2014.

Appendix

Appendix

1.1 The Miedema Scheme for R ≠ 0

In alloys of a transition metal (d-electron-type) and one of the polyvalent non-transition (p-electron-type) metals, the solutes can be sorted out in the same way as non-transition elements. However, in this case, the lines which separate the positive enthalpy of mixing regions from negative ones are not straight through the origin, but take a hyperbolic shape because of an additional, negative term, R. This term indicates that a large negative energy stemming from hybridisation between the valence d and p electrons contributes to the heat of formation. Using Eq. [2], Figure A1 was created for different R values according to the solutes, listed in Table A1.

Fig. A1
figure 14

The Miedema scheme for Mg alloys, for different R values (given as R/P ratios) in Eq. [2]. Co-ordinates data from Ref. [27]. R = 0 corresponds to Fig. 8

Table A1 R Values for Different Elements[27]

Replacing the diagonal lines of Figure 8 by the lines for different R/P values shifts a few elements as borderline elements, e.g., Th and Sc, from the East sector to the North-South. In those cases, examination of the phase diagrams determines to which sector the element actually belongs to. Thus, Th and Sc, both with a single-eutectic phase diagram, belong in the West-East sector, consistently with assuming R = 0 for Figure 8.

The Mg-Ni phase diagram, with two eutectics, belongs in the North sector, which is correct according to the R/P = 0.4 line. On the other hand, B, with a single-eutectic phase diagram is expected to sit on the West sector while it appears on the North sector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaspour, S., Cáceres, C.H. Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys. Metall Mater Trans A 46, 5972–5988 (2015). https://doi.org/10.1007/s11661-015-3128-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3128-5

Keywords

Navigation