Skip to main content
Log in

Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA2219 aluminum alloy plate (T87) and ring (T851) were joined by tungsten inert gas (TIG) welding using multi-pass welding. The mechanical properties and stress corrosion cracking (SCC) resistance of the above base metals (BMs) in different directions (L, LT, and ST) were examined. Similarly, the weld metal joined by plate to plate and plate to ring (PR) joints was evaluated. The results revealed that the mechanical properties of the ring were comparatively lower than the plate. This was found to be due to the extremely coarse grain size of the ring along with severe Cu-rich segregation along the grain boundaries when compared to the plate material. The SCC resistance of the base and weldments were found to be good and not susceptible to SCC. This was shown to be due to high values of SCC index (>0.9) and the typical ductile cracking morphology of the BM and the weld joints after SCC test in the environment (3.5 wt pct NaCl) when compared to test performed in the control environment (air). However, the corrosion resistance of the weld interface between the FZ and ring was inferior to the FZ–plate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.O. Sprowls and R.H. Brown: in Proc. Conf. onFundamental Aspects of Stress Corrosion Cracking” OH, Sept. 11–15, NACE, Houston, TX, 1967, pp. 478–86

  2. M.O. Speidel Metall. Trans. A, 1975, vol.6A, pp. 633-52

    Google Scholar 

  3. J.R. Simmons, L. Johnson, A. Daech, and R. Merschel: Mater. Perf., 1982, pp. 14–18

  4. C.H. Crane and W.G. Smith: Weld. Res. Suppl., 1961, pp. 33s–40s

  5. K. Srinivasa Rao, G. Madhusudhan Reddy and K. Prasad Rao, Mater. Sci. Eng. A, 2005, vol.403, pp.69-76

    Article  Google Scholar 

  6. C. Huang and S. Kou: Weld. Res. Suppl., 2001, pp. 46s–53s

  7. C. Huang and S. Kou: Weld. J., 2003, pp. 184s–94s

  8. C. Huang and S. Kou: Weld. Res. Suppl., 2000, pp. 113s–20s

  9. C. Huang and S. Kou: Weld. Res. Suppl., 2001, pp. 9s–17s

  10. K. Srinivasa Rao and K. Prasad Rao, Mater. Sci. Tech. 2005, vol.21 pp. 1199-207

    Article  Google Scholar 

  11. J.A. Hartman, R.J. Beil, and G.T. Hahn: Weld. Res. Suppl., 1987, pp. 73s–83s

  12. A. Venugopal, K. Sreekumar and V.S. Raja, Metall. Trans. A, 2012, vol.43A, pp.3135-3148

    Article  Google Scholar 

  13. A. Venugopal, K. Sreekumar and V.S. Raja, Metall. Trans. A, 2010, vol.41A, pp.3151-3160

    Article  Google Scholar 

  14. C.S. Paglia and R.G. Buchheit: Mater. Sci. Eng. A, 2006, vol.429, pp. 107-14

    Article  Google Scholar 

  15. W. Hu and EI Meletis: Mater. Sci. Forum, 2000, Vols. 331-227, pp. 1683-88

    Article  Google Scholar 

  16. P. Bala Srinivasan, K. S. Arora, W. Dietzel, S. Pandey and M.K. Schaper, J. Alloy. Compd., 2009, vol. 492, pp. 631-37

    Article  Google Scholar 

  17. AMS 2772E: Heat Treatment of Aluminium Alloy Raw Material, 2008–02

  18. T.F. Morgeneyer, M.J. Starink, S.C. Wang and I. Sinclair, Acta Materialia, 2008, vol. 56, pp.2872-2884

    Article  Google Scholar 

  19. A.K. Vasudevan and R.D. Doherty, Acta. Metall. 1987, vol.35, pp.1193-1219

    Article  Google Scholar 

  20. S.D. Liu, B. Chen, C.B. Li, Y. Dai, YlL. Deng and X.M. Zhang: Corros. Sci., 2015, vol.91, pp.203-12

    Article  Google Scholar 

  21. F. Song, X. Zhang, S. Liu and K. Li, Corros. Sci., 2014, Vol.78, pp.276-86

    Article  Google Scholar 

  22. T. Ramgopal, P.I. Gouma and G.S. Frankel: Corrosion, 2002, vol.58, pp.687-97

    Article  Google Scholar 

  23. N. Birbilis, M.K. Cavanaugh and R.G. Buchheit, Corros. Sci., 2006, vol.48, pp.4202-14

    Article  Google Scholar 

  24. G.O. Llevbare and J.R. Scully, Corrosion 2001, vol.57, pp.134-52

    Article  Google Scholar 

  25. X.Y. Zhu, C.Y. Deng, Y. Wang, Z.W. Yang, J.K. Ding and D.P. Wang, Materials & Design 2015, vol.65, pp.1075-82

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Deputy Director, (MME) VSSC for the interest and encouragement given throughout the work. The authors are thankful to Director (VSSC) for granting permission to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venugopal.

Additional information

Manuscript submitted July 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, A., Narayanan, P.R. & Sharma, S.C. Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution. Metall Mater Trans A 47, 1607–1620 (2016). https://doi.org/10.1007/s11661-016-3332-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3332-y

Keywords

Navigation