Skip to main content
Log in

Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439–1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Campbell: Castings. 2nd edition, 2003, Oxford, Butterworth-Heinemann.

    Google Scholar 

  2. J. Drezet, M. Rappaz, Y. Krahenbuhl: Mater. Sci. Forum, 1996, vol. 217-222, pp. 305-310.

    Article  Google Scholar 

  3. D.G. Eskin, M. Lalpoor, L. Katgerman: Published in TMS-Light Metals, S.J. Lindsay, ed., TMS, Warrendale, PA, 2011, pp. 669–74.

  4. B. Commet, P. Delaire, J. Rabenberg, et al.: Published in TMS-Light Metals, P.N. Crepeau, ed., TMS, Warrendale, PA, 2003, pp. 711–17

  5. M. Lalpoor, D. G. Eskin, et al.: Mater. Sci. Eng. A, 2011, vol. 528, p. 2831-2842.

    Article  Google Scholar 

  6. J. Grandfeld, P. McGlade: Mater. Sci. Forum. 1996, vol. 20, pp. 29-51.

    Google Scholar 

  7. D.G. Eskin, Q. Du, L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1206-1212.

    Article  Google Scholar 

  8. D.G. Eskin, L. Katgerman: Mater. Techn., 2009, vol. 24, pp. 152-156.

    Article  Google Scholar 

  9. K. D. Carlson, C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163-175.

    Article  Google Scholar 

  10. J. A. Dantzig, M. Rappaz: Solidification. 1st edition, 2009, Lausanne, EPFL Press.

    Book  Google Scholar 

  11. I. Farup, J.M. Drezet, M. Rappaz: Acta Mater., 2001, vol. 49, pp. 1261-1269.

    Article  Google Scholar 

  12. A.B. Phillion, S.L. Cockcroft, P.D. Lee: Mater. Sci. Eng. A, 2008, vol. 491, pp. 237-247.

    Article  Google Scholar 

  13. N. Jamaly, A. B. Phillion, J. M. Drezet: Metall. Mater. Trans. B, 2013, vol. 44B, 1287-1295.

    Article  Google Scholar 

  14. Y. Won, T. Yeo, D. Seol, et al.: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779-794.

    Article  Google Scholar 

  15. M. Rappaz, J.-M. Drezet, M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449-455.

    Article  Google Scholar 

  16. T. Clyne, G. Davies: British Foundryman, 1981, vol. 74, pp. 65-73.

    Google Scholar 

  17. C. Monroe, C. Beckermann: JOM, 2014, vol. 66, pp. 1439-1445.

    Article  Google Scholar 

  18. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Cast Met. Res. J., 1982, vol. 7, pp. 52–63.

    Google Scholar 

  19. J. Sengupta, S.L. Cockcroft, et al.: Mater. Sci. Eng. A, 2005, vol. 397, pp. 157–77.

    Article  Google Scholar 

  20. J.-M. Drezet and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–25.

    Article  Google Scholar 

  21. A.W.H. Heijs, C. Lowe: Phys. Rev. E, 1995, vol. 51, pp. 4346-4352.

    Article  Google Scholar 

  22. S. Ergun: Chem. Engg. Prog., 1952, vol. 48, pp. 89-94.

    Google Scholar 

  23. D.G. Eskin, Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629-711.

    Article  Google Scholar 

  24. B. Magnin, L. Maenner, et al.: Mater. Sci. Forum, 1996, vol. 217-222, pp. 1209-1214.

    Article  Google Scholar 

  25. A. Yamanaka, K. Nakajima, et al.: Revue Metall.-Cahiers D Inf. Techn., 1992, vol. 89, pp. 627–33.

  26. A. Alankar, M. A. Wells: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7812-7820.

    Article  Google Scholar 

  27. A. B. Phillion, S. L. Cockcroft, P. D Lee: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, pp. 1-15.

    Article  Google Scholar 

  28. A. M. Glenn, S. P. Russo, P. J. K. Paterson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1513-1523.

    Article  Google Scholar 

  29. J.M. Drezet and M. Rappaz: TMS-Light Metals, J.L. Angier, ed., TMS, Warrendale, PA, 2001, pp. 887–93.

  30. H. Hao, D.M. Maijer, et al.: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2067-2077.

    Article  Google Scholar 

  31. C. Monroe, C. Beckermann: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 30-36.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the China Scholarship Council, and the National Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Phillion.

Additional information

Manuscript submitted September 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, R., Phillion, A.B. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys. Metall Mater Trans A 47, 4217–4225 (2016). https://doi.org/10.1007/s11661-016-3590-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3590-8

Keywords

Navigation