Skip to main content
Log in

Modeling of ingot distortions during direct chill casting of aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comprehensive three-dimensional (3-D) mathematical model based upon the ABAQUS software has been developed for the computation of the thermomechanical state of the solidifying strand during direct chill (DC) casting of rolling sheet ingots and during subsequent cooling. Based upon a finiteelement formulation, the model determines the temperature distribution, the stresses, and the associated deformations in the metal. For that purpose, the thermomechanical properties of the alloy have been measured up to the coherency temperature using creep and indentation tests. The thermophysical properties as well as the boundary conditions associated with the lateral water spray have been determined using inverse modeling. The predicted ingot distortions, mainly, “butt curl,” “butt swell,” and lateral faces pull-in, are compared with experimental measurements performed during solidification and after complete cooling of the ingot. Particular emphasis is placed on the nonuniform contraction of the lateral faces. The influence of the mold shape and the contributions to this contraction are assessed as a function of the casting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Emley:Int. Met. Rev., 1976, June, pp. 75-115.

  2. R.E. Spear and H. Yu:Aluminum, 1984, p. 440.

  3. Ho Yu:Light Met., 1980, p. 613.

  4. W. Droste and W. Schneider:Light Met, 1991, p. 945.

  5. Alusuisse Casthouse Seminar, Alusuisse-Lonza Services Ltd., Chippis, Switzerland, 1994.

  6. B. Carrupt and C. Moulin:8th Int. Sheet and Plate Conf, Louisville, KY, Oct. 5–8, 1993.

  7. J.-M. Drezet, M. Rappaz, B. Carrupt, and M. Plata:Metall. Trans. Mater. B, 1995, vol. 26B, pp. 821–29.

    Article  CAS  Google Scholar 

  8. C.H. Weaver:An Empirical Model to Explain Cross-Section Changes of D.C. Sheet Ingot during Casting, TMS-AIME, Warrendale, PA, 1976, p. 441.

    Google Scholar 

  9. C.H. Weaver:Light Met., 1991, p. 953.

  10. O. Richmond: inModeling of Casting, Welding and Advanced Solidification Processes, H.D. Brody and D. Apelian, eds., TMS, Warrendale, PA, 1981, p. 215.

    Google Scholar 

  11. N. Zabaras and V.R. Voller: inModeling of Casting, Welding and Advanced Solidification Processes, A.F. Giamei and G.J. Abbaschian, eds., TMS, Warrendale, PA, 1988, vol. 4. p. 683.

    Google Scholar 

  12. B.G. Thomas: inModeling of Casting, Welding and Advanced Solidification Processes T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, vol. 6, p. 519.

    Google Scholar 

  13. L. Katgerman, S.C. Flood and A.H. Langille: inProduction, Refining, Fabrication and Recycling of Light Metals, M. Bouchard and P. Tremblay, eds., Pergamon Press, Hamilton, Ontario, vol. 19, 1990, p. 97.

    Google Scholar 

  14. O. Richmond and R.H. Tien:J. Mech Phys. Solids, 1971, vol. 19, p. 273.

    Article  Google Scholar 

  15. J.O. Kristiansson:J. Thermal Stresses, 1982, vol. 5, p. 315.

    Article  Google Scholar 

  16. A. Grill and K. Schwerdtfeger:Ironmaking and Steelmaking, 1979, vol. 3, p. 131.

    Google Scholar 

  17. B.G. Thomas, I.V. Samarasekera, and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 119–30.

    CAS  Google Scholar 

  18. J.R. Williams, R.W. Lewis, and K. Morgan:Int. J. Numer. Methods Eng., 1979, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  19. J.E. Kelly, K.P. Michalek, T.G. O’Connor, B.G. Thomas, and J.A. Dantzig:Metall. Trans. A, 1988, vol. 19A, pp. 2589–2602.

    CAS  Google Scholar 

  20. D.C. Weckman and P. Niessen:Can. Metall. Q., 1984, vol. 23, p. 209.

    Google Scholar 

  21. B. Hannart, F. Cialti, and R.V. Schalkwijk:Light Met., 1994, p. 879.

  22. H.G. Fjaer and E.K. Jensen:Light Met., 1995, p. 951.

  23. E.K. Jensen and W. Schneider:Light Met., 1990, p. 937.

  24. Y. Krähenbühl, R. Von Kaenel, B. Carrupt, and J.C. Weber:Light Met., 1990, p. 893.

  25. S. Mariaux, M. Rappaz, Y. Krähenbühl, and M. Plata:Light Met., 1992, p. 175.

  26. J. Moriceau:Light Met., 1975, p. 119.

  27. B. Janin:State of the Art of Computer Simulation of Casting and Solidification Processes, H. Fredriksson, ed., Les Editions de Physique, Strasbourg, France, 1986, p. 305.

    Google Scholar 

  28. J. Mathew and H.D. Brody:Nucl. Metall, 1976, vol. 20 (2), p. 978.

    Google Scholar 

  29. M. Heinlein, S. Mukherjee, and O. Richmond:Acta Mech, 1986, vol. 59, p. 59.

    Article  Google Scholar 

  30. H.D. Brody, P. Wisniewski, A. Gokhale, and J. Mathew: inModeling of Casting, Welding and Advanced Solidification Processes, A.F. Giamei and G.J. Abbaschian, eds., TMS, Warrendale, PA, 1988, vol. 4, p. 351.

    Google Scholar 

  31. H. Fjaer and A. Mo:Metall. Trans. B, 1990, vol. 21B, pp. 1049–61.

    CAS  Google Scholar 

  32. R.E. Smelser and O. Richmond: inModeling of Casting, Welding and Advanced Solidification Processes, A.F. Giamei and G.J. Abbaschian, eds., TMS, Warrendale, PA, 1988, vol. 4, p. 313.

    Google Scholar 

  33. V.M. Sample and L.A. Lalli:Mater. Sci. Technol., 1987, vol. 3, p. 28.

    CAS  Google Scholar 

  34. L. Anand:Trans. ASME, 1982, vol. 104, p. 12.

    Google Scholar 

  35. A. Mo and E.J. Holm:J. Thermal Stresses, 1991, vol. 14, p. 571.

    Article  Google Scholar 

  36. Introduction to Creep, R.W. Evans and B. Wilshire, eds., The Institute of Materials.

  37. M. Rappaz, J.L. Desbiolles, J.M. Drezet, C.A. Gandin, A. Jacot, and P. Thevoz:Modeling of Casting, Welding and Advanced Solidification Processes, TMS, Warrendale, PA, 1995, p. 449.

    Google Scholar 

  38. R.D. Pehlke, A. Jeyrajan, and H. Wada:Summary of Thermophysical Properties for Casting Alloys and Mold Materials, University of Michigan Report, University of Michigan, Ann Arbor, MI, 1982.

    Google Scholar 

  39. J.P. Gabathuler:Thermoanalyse, Alusuisse Internal Technical Report, June 1985.

  40. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1984.

    Google Scholar 

  41. J. Ampuero, A.F.A. Hoadley, and M. Rappaz: inModeling of Casting, Welding and Advanced Solidification Processes, M. Rappaz, M.R. Ozgu, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991, vol. 5, p. 449.

    Google Scholar 

  42. R.J. Claxton: eds.,J. Met., 1975, Feb., p. 14.

  43. J.M. Drezet and G. Eggeier:Scripta Metall. Mater., 1994, vol. 31, p. 757.

    Article  CAS  Google Scholar 

  44. F. Garafalo:Trans. TMS-AIME, 1963, vol. 227, p. 351.

    Google Scholar 

  45. P. Ackermann and W. Kurz:Mater. Sci. Eng., 1975, vol. 75, p. 79.

    Google Scholar 

  46. P. Vicente: Ph.D. Thesis, Ecole Nationale Superieure des Mines de Paris, Paris, 1994.

    Google Scholar 

  47. O. Branswyck, J. Collot, P. Vicente-Hernandez, A.-M. Chaze, and C. Levaillant: inEuromat 1991, J.W. Clyne, ed., Institute of Metals, London, 1992, pp. 124–30.

    Google Scholar 

  48. Abaqus Theory Manual, K. Hibbit and J. Sorensen, eds., Hibbit, Karlson and Sorensen, Inc., Providence, RI, 1994.

    Google Scholar 

  49. L.F. Mondolfo:Aluminum Alloys: Structure and Properties, Butterworth and Co., Boston, 1976.

    Google Scholar 

  50. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Elmsford, NY, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drezet, J.M., Rappaz, M. Modeling of ingot distortions during direct chill casting of aluminum alloys. Metall Mater Trans A 27, 3214–3225 (1996). https://doi.org/10.1007/BF02663872

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663872

Keywords

Navigation