Skip to main content
Log in

Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear “lambda”-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Spittle and A.A. Cushway, Metal Technol. 10, 6 (1983).

    Article  Google Scholar 

  2. R.A. Rosenberg, M.C. Flemings, and H.F. Taylor, AFS Trans. 68, 518 (1960).

    Google Scholar 

  3. S. Li, K. Sadayappan, and D. Apelian, Metall. Mater. Trans. B 44, 614 (2013).

    Article  Google Scholar 

  4. I. Farup, J.-M. Drezet, and M. Rappaz, Acta Mater. 49, 1261 (2001).

    Article  Google Scholar 

  5. G.K. Sigworth, AFS Trans. 155, 1053 (1996).

    Google Scholar 

  6. A.B. Phillion, S.L. Cockcroft, and P.D. Lee, Mater. Sci. Eng. A 491, 237 (2008).

    Article  Google Scholar 

  7. Z. Wang, Y. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, and N. Hort, J. Mater. Sci. 49, 353 (2014).

    Article  Google Scholar 

  8. M.G. Pokorny, C.A. Monroe, C. Beckermann, Z. Zhen, and N. Hort, Metall. Mater. Trans. A 41A, 3196 (2010).

    Article  Google Scholar 

  9. D.G. Eskin and L. Katgerman, Metall. Mater. Trans. A 38, 1511 (2007).

    Article  Google Scholar 

  10. M. Rappaz, J.M. Drezet, and M. Gremaud, Metall. Mater. Trans. A 30A, 449 (1999).

    Article  Google Scholar 

  11. K.D. Carlson and C. Beckermann, Metall. Mater. Trans. A 40A, 163 (2009).

    Article  Google Scholar 

  12. E. Niyama, T. Uchida, M. Morikawa, and S. Saito, AFS Cast Met. Res. J. 7, 52 (1982).

    Google Scholar 

  13. W. Kurz and D.J. Fisher, Fundamentals of Solidification, 3rd ed. (Aedermannsdorf: Trans Tech Publications, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Monroe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroe, C., Beckermann, C. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion. JOM 66, 1439–1445 (2014). https://doi.org/10.1007/s11837-014-0999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0999-7

Keywords

Navigation