Skip to main content
Log in

Microstructural Evolutions, Hot Deformation and Work Hardening Behaviour of Novel Al–Zn Binary Alloys Processed by Squeezing and Hot Extrusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main goals of this work were to manufacture novel Al–Zn extruded alloys by varying the Zn content (0, 10, 20, 30 wt%), investigate the microstructural evolutions, hot deformation, and work hardening behaviour by hot compression test at different temperatures (25 °C, 75 °C, 150 °C, 225 °C, 300 °C). Al–20Zn alloy microstructure revealed α-Al and uniform distribution of (α + η) phases, coherent (α + η) crystals in GBs with casting defect-free surfaces, and effective interactions of pinning dislocations which led to improve mechanical performance of Al–20Zn alloy, as compared to the other alloys. The observed engineering stress–strain curve results revealed the decrease of stress with increasing of temperature due to flow softening, dynamic recovery and dynamic recrystallization. These results displayed also an increase of stress value with increasing of Zn content due to the precipitation of high density (α + η) phase in the matrix and GBs, increasing of forest and mobile dislocations density with strain fields, and the formation of fine dendrites. Work hardening rate (WHR) of extruded samples displayed three stages: stage I, WHR decreased slightly with increasing of temperature up to 75 °C and decreased drastically from 75 °C to 300 °C due to softening; stage II, WHR maintained constant due to balance between dislocation generations and dislocation annihilation; stage III, WHR slightly increased due to strain hardening of (α + η) phase. WHR was observed to increase considerably with increasing of Zn content due to the formation and dispersion of high density of (α + η) phase in the Al matrix and GBs. Deformation micro-localization in terms of different characteristics was examined and reported on the deformed samples after hot-compression test through SEM micrographs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The experimental datasets obtained from this research work and then the analysed results during the current study are available from the corresponding author on reasonable request.

Abbreviations

SEM:

Scanning electron microscope

FEG-HRSEM:

Filed emission gun high resolution scanning electron microscope

EDM:

Electric discharge machining

CTE:

Coefficient of thermal expansion

YS:

Yield strength

UCS:

Ultimate compressive strength

RT:

Room temperature

GBs:

Grain boundaries

TEM:

Transmission electron microscope

BFI:

Bright field image

DRC:

Dynamic recovery

DRX:

Dynamic recrystallization

References

  1. P.K. Krajewski, A.L. Greer, W.K. Krajewski, J. Mater. Eng. Perform. 28, 3986 (2019)

    Article  CAS  Google Scholar 

  2. T. Savaşkan, O. Bican, Y. Alemdağ, J. Mater. Sci. 44, 1969 (2009)

    Article  Google Scholar 

  3. G.K. Levy, J. Goldman, E. Aghion, Metals 7, 402 (2017)

    Google Scholar 

  4. D. Rollez, A. Pola, F. Prenger, World Metall. 68, 354 (2015)

    Google Scholar 

  5. A. Azarniya, A.K. Taheri, K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective. J. Alloys Compd. 781, 945–983 (2019)

    Article  CAS  Google Scholar 

  6. R. Michalik, Arch. Metall. Mater. 63, 461 (2018)

    CAS  Google Scholar 

  7. R. Michalik, A. Tomaszewska, H. Woźnica, IOP Conf. Ser. Mater. Sci. Eng. 22, 012010 (2011)

    Article  Google Scholar 

  8. Y.H. Zhu, W.B. Lee, Z. Mei, S. To, Y.K. Sze, Appl. Surf. Sci. 242, 236 (2005)

    Article  CAS  Google Scholar 

  9. P. Kapranos, D. Brabazon, S.P. Midson, S. Naher, T. Haga, Advanced Casting Methodologies: Inert Environment Vacuum Casting and Solidification, Die Casting, Compocasting, and Roll Casting, vol. 5 (Elsevier, Amsterdam, 2014)

    Google Scholar 

  10. A. Haghparast, M. Nourimotlagh, M. Alipour, Mater. Charact. 71, 6 (2012)

    Article  CAS  Google Scholar 

  11. L.Q. Yang, Y.L. Kang, F. Zhang, J. Xu, T. Nonferr. Metal. Soc. 20, 862 (2010)

    Article  Google Scholar 

  12. Q. Chen, B. Yuan, G. Zhao, D. Shu, C. Hu, Z. Zhao, Z. Zhao, Mater. Sci. Eng. A 537, 25 (2012)

    Article  CAS  Google Scholar 

  13. D. Rollez, A. Pola, L. Montesano, M. Brisotto, D. De Felicis, M. Gelfi, Int. J. Mater. Res. 108, 447 (2017)

    Article  CAS  Google Scholar 

  14. H. Zhang, N.P. Jin, J.H. Chen, T. Nonferr. Metal. Soc. 21, 437 (2011)

    Article  CAS  Google Scholar 

  15. Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, J. Alloy. Compd. 550, 438 (2013)

    Article  CAS  Google Scholar 

  16. Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, G. Huang, Mater. Sci. Eng. A 662, 204 (2016)

    Article  CAS  Google Scholar 

  17. J. Tang, H. Zhang, J. Teng, D. Fu, F. Jiang, J. Alloy. Compd. 806, 1081 (2019)

    Article  CAS  Google Scholar 

  18. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Mater. Sci. Eng. A 443, 248 (2007)

    Article  Google Scholar 

  19. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, B.Y. Zhang, Mater. Sci. Eng. A 488, 64 (2008)

    Article  Google Scholar 

  20. J.F. Liu, Z.Q. Yang, H.Q. Ye, J. Alloy. Compd. 621, 179 (2015)

    Article  CAS  Google Scholar 

  21. M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59, 3646 (2011)

    Article  CAS  Google Scholar 

  22. J.Y. Yang, W.J. Kim, J. Mater. Res. Technol. 9, 749 (2020)

    Article  CAS  Google Scholar 

  23. G. Garces, M.A. Muñoz-Morris, D.G. Morris, P. Perez, P. Adeva, Mater. Sci. Eng. A 614, 96 (2014)

    Article  CAS  Google Scholar 

  24. H. Wang, C. Wang, Y. Mo, H. Wang, J. Xu, J. Mater. Res. Technol. 8, 1224 (2019)

    Article  CAS  Google Scholar 

  25. C. Shi, J. Lai, X.G. Chen, Materials 7, 244 (2014)

    Article  Google Scholar 

  26. S. Sivasankaran, F. Al-Mufadi, T. Indian I. Metals 73, 1439 (2020)

    Article  CAS  Google Scholar 

  27. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, D.L. Chen, J. Mater. Sci. Technol. 31, 1161 (2015)

    Article  CAS  Google Scholar 

  28. J. Yan, Q.L. Pan, X.K. Zhang, X. Sun, A. de Li, X. Zhou, J. Cent. South Univ. 24, 515 (2017)

    Article  CAS  Google Scholar 

  29. P.E.J. Rivera-Díaz-del-Castillo, M. Huang, Acta Mater. 60, 2606 (2012)

    Article  Google Scholar 

  30. S. Sivasankaran, A.S. Alaboodi, F. Al-Mufadi, Mater. Manuf. Process. 33, 1693 (2018)

    Article  CAS  Google Scholar 

  31. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford university press, Oxford, 2007), pp. 283–343. https://doi.org/10.1093/acprof:oso/9780198516002.003.0007

  32. Y. Bréchet, F. Louchet, Solid State Phenom. 34, 347 (1991)

    Article  Google Scholar 

  33. Y. Xu, J. Zhang, Y. Bai, M.A. Meyers, Metall. Mater. Trans. A 39, 811 (2008)

    Article  Google Scholar 

  34. V.I. Danilov, L.B. Zuev, E.V. Letakhova, D.V. Orlova, I.A. Okhrimenko, J. Appl. Mech. Tech. Phy. 47, 298 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge College of Engineering, Qassim University, Saudi Arabia to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, formal analysis, investigation, roles/writing-original draft; KRR: formal analysis, validation, visualization; HRA: investigation, methodology; FAA-M: resources, funding acquisition, project administration; ASA: resources, writing—review and editing; OMI: methodology, data curation, validation.

Corresponding author

Correspondence to S. Sivasankaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasankaran, S., Ramkumar, K.R., Ammar, H.R. et al. Microstructural Evolutions, Hot Deformation and Work Hardening Behaviour of Novel Al–Zn Binary Alloys Processed by Squeezing and Hot Extrusion. Met. Mater. Int. 28, 998–1013 (2022). https://doi.org/10.1007/s12540-020-00945-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00945-w

Keywords

Navigation