Skip to main content
Log in

Mechanical Alloying and Powder Forging of 18%Cr Oxide Dispersion-Strengthened Steel Produced Using Elemental Powders

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened (ODS) ferritic steels are potential materials for cladding tubes in fast breeder fission reactors. These are mostly prepared by mechanical alloying of yttria powder with pre-alloyed powders. Using elemental powders offers flexibility in the choice of alloy compositions. Here we report mechanical alloying of Fe-18Cr-2W-0.2Ti-0.35Y2O3 (compositions in wt.%) ODS steel using elemental powders of Fe, Cr, W and Ti with yttria powder. After 5 h of milling, no significant changes in particle size and crystallite size were observed. Powders milled for 5 and 7 h were consolidated through powder forging route. The optimum milling time for mechanical alloying could be determined only after evaluating the forgings. It is difficult to achieve recrystallization in ODS alloys. The forging process parameters were optimized to achieve a dense alloy with a fine recrystallized microstructure. Factors leading to recrystallization are discussed. It is shown that recrystallization in ODS steels is more likely to occur during forging as compared to extrusion/rolling. The powder forging route offers several advantages over the conventional extrusion or HIP routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje, Selection of Materials for Prototype Fast Breeder Reactor, Trans. Ind. Inst. Metals, 2003, 56, p 155–178

    CAS  Google Scholar 

  2. S. Latha, M.D. Mathew, P. Parameswaran, K.B.S. Rao, and S.L. Mannan, Thermal Creep Properties of Alloy D9 Stainless Steel and 316 Stainless Steel Fuel Clad Tubes, Int. J. Pres. Ves. Pip., 2008, 85, p 866–870

    Article  CAS  Google Scholar 

  3. P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V.S. Sarma, Microstructural Studies on Nanocrystalline Oxide Dispersion Strengthened Austenitic (Fe-18Cr-8Ni-2W-0.25Y2O3) Alloy Synthesized by High Energy Ball Milling and Vacuum Hot Pressing, J. Mater. Sci., 2010, 45, p 4858–4865

    Article  CAS  Google Scholar 

  4. S.J. Zinkle and J.T. Busby, Structural Materials for Fission & Fusion Energy, Mater. Today, 2009, 12(11), p 12–19

    Article  CAS  Google Scholar 

  5. C.R.F. Azevedo, Selection of Fuel Cladding Material for Nuclear Fission Reactors, Eng. Fail. Anal., 2011, 18, p 1943–1962

    Article  CAS  Google Scholar 

  6. T. Allen, J. Busby, M. Meyer, and D. Petti, Material Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23

    Article  CAS  Google Scholar 

  7. J.G. Marques, Evolution of Nuclear Fission Reactors: Third Generation and Beyond, Energy Convers. Manag., 2010, 51, p 1774–1780

    Article  CAS  Google Scholar 

  8. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings, J. Nucl. Sci. Technol., 2002, 39(8), p 872–879

    Article  CAS  Google Scholar 

  9. S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757

    Article  Google Scholar 

  10. J.S. Cheon, C.B. Lee, B.O. Lee, J.P. Raison, T. Mizuno, F. Delage, and J. Carmack, Sodium Fast Reactor Evaluation: Core Materials, J. Nucl. Mater., 2009, 392, p 324–330

    Article  CAS  Google Scholar 

  11. International Atomic Energy Agency (IAEA), Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies-Operational Behaviour, IAEA Nuclear Energy Series No. NF-T-4.3, IAEA: Vienna; ISSN 1995-7807, 2012, p 1–87

  12. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195

    Article  CAS  Google Scholar 

  13. A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels, Nat. Mater., 2011, 10, p 922–926

    Article  CAS  Google Scholar 

  14. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Stability of Ferritic MA/ODS Alloys at High Temperatures, Intermetallics, 2005, 13, p 387–392

    Article  CAS  Google Scholar 

  15. C. Cayron, E. Rath, I. Chu, and S. Launois, Microstructural Evolution of Y2O3 and MgAl2O4 ODS Eurofer Steels During Their Elaboration by Mechanical Milling and Hot Isostatic Pressing, J. Nucl. Mater., 2004, 335, p 83–102

    Article  CAS  Google Scholar 

  16. M. Inoue, T. Kaito, and S. Ohtsuka, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactors Fuels, Materials Issues for Generation IV Systems, V. Ghetta, D. Gorse, D. Mazière, and V. Pontikis, Ed., Springer, Netherlands, 2008, p 311–325

    Chapter  Google Scholar 

  17. P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12

    Article  CAS  Google Scholar 

  18. Y. Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M.H. Mathon, CEA Developments of New Ferritic ODS Alloys for Nuclear Applications, J. Nucl. Mater., 2009, 386–388, p 430–432

    Article  Google Scholar 

  19. H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, and M. Fujiwara, Precipitation Behaviour of Oxide Particles in Mechanically Alloyed Powder of Oxide-Dispersion-Strengthened Steel, J. Alloys Compd., 2008, 452, p 2–6

    Article  CAS  Google Scholar 

  20. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184

    Article  CAS  Google Scholar 

  21. Z. Oksiuta, Microstructural Changes of ODS Ferritic Steel Powders During Mechanical Alloying, Acta Mech. Autom., 2011, 5(2), p 74–78

    Google Scholar 

  22. N.Y. Iwata, A. Kimura, M. Fujiwara, and N. Kawashima, Effect of Milling on Morphological and Microstructural Properties of Powder Particles for High-Cr Oxide Dispersion Strengthened Ferritic Steels, J. Nucl. Mater., 2007, 367–370, p 191–195

    Article  Google Scholar 

  23. H. Xu, Z. Lu, D. Wang, and C. Liu, Microstructural Evolution in a New Fe Based ODS Alloy Processed by Mechanical Alloying, Nucl. Mater. Energy, 2016, 7, p 1–4

    Article  Google Scholar 

  24. R. Xie, Z. Lu, C. Lu, and C. Liu, Effects of Mechanical Alloying Time on Microstructure and Properties of 9Cr-ODS Steels, J. Nucl. Mater., 2014, 455, p 554–560

    Article  CAS  Google Scholar 

  25. A. Ramar, Z. Oksiuta, N. Baluc, and R. Schäublin, Effect of Mechanical Alloying on the Mechanical and Microstructural Properties of ODS Eurofer97, Fusion Eng. Des., 2007, 82, p 2543–2549

    Article  CAS  Google Scholar 

  26. C.L. Chen and Y.-M. Dong, Effect of Mechanical Alloying and Consolidation Process on Microstructure and Hardness of Nanostructured Fe-Cr-Al ODS Alloys, J. Mater. Sci. Eng. A, 2011, 528, p 8374–8380

    Article  CAS  Google Scholar 

  27. M. Bodart, R. Baccino, and F. Moret, Elaboration and Study of Mechanically Alloyed O.D.S. Ferritic Stainless Steel, J. Phys. IV, 1993, 3, p 709–714

    CAS  Google Scholar 

  28. M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Influence of the Duration of High Energy Ball Milling on the Microstructure and Mechanical Properties of a 9Cr Oxide Dispersion Strengthened Ferritic-Martensitic Steel, Mater. Sci. Eng. A, 2015, 620, p 490–499

    Article  Google Scholar 

  29. M. Nagini, R. Vijay, K.V. Rajulapati, K.B.S. Rao, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel, Metall. Mater. Trans. A, 2016, 47A, p 4197–4209

    Article  Google Scholar 

  30. G. Sundararajan, R. Vijay, and A.V. Reddy, Development of 9Cr Ferritic-Martensitic and 18Cr Ferritic Oxide Dispersion Strengthened Steels, Curr. Sci., 2013, 105(8), p 1100–1106

    CAS  Google Scholar 

  31. V. Castro, T. Leguey, M.A. Monge, A. Munoz, R. Pareja, D.R. Amador, J.M. Torralba, and M. Victoria, Mechanical Dispersion of Y2O3 Nanoparticles in Steel EUROFER 97: Process and Optimisation, J. Nucl. Mater., 2003, 322, p 228–234

    Article  Google Scholar 

  32. S.K. Rajulapati, U. Prakash, K. Laha, and V.V. Dabhade, Studies on Alloying Process of a Ferritic/Martensitic Oxide Dispersion Strengthened (ODS) Steel Prepared by Mechanical Alloying of Elemental Powders, Powder Metall., 2016, 59(5), p 350–358

    Article  CAS  Google Scholar 

  33. P. He, T. Liu, A. Möslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Commin, P. Vladimirov, S. Nikitenko, and M. Silveir, XAFS and TEM Studies of the Structural Evolution of Yttrium-Enriched Oxides in Nanostructured Ferritic Alloys Fabricated by a Powder Metallurgy Process, Mater. Chem. Phys., 2012, 136, p 990–998

    Article  CAS  Google Scholar 

  34. M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, and B. Fournier, Study of the Deformation Mechanisms in a Fe-14%Cr ODS Alloy, J. Mater. Sci., 2012, 428, p 90–97

    CAS  Google Scholar 

  35. S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe, Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application (I), J. Nucl. Sci. Technol., 1997, 34(3), p 256–263

    Article  CAS  Google Scholar 

  36. M. Dade, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, and A. Deschamps, Influence of Consolidation Methods on the Recrystallization Kinetics of a Fe-14Cr Based ODS Steel, J. Nucl. Mater., 2016, 472, p 143–152

    Article  CAS  Google Scholar 

  37. Z. Oksiuta and N. Baluc, Microstructure and Charpy Impact Properties of 12-14Cr Oxide Dispersion-Strengthened Ferritic Steels, J. Nucl. Mater., 2008, 374, p 178–184

    Article  CAS  Google Scholar 

  38. D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel through Powder Forging, J. Mater. Eng. Perform., 2017, 26(4), p 1817–1824

    Article  CAS  Google Scholar 

  39. C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, Inc., New York, 2004, p 1–488

    Google Scholar 

  40. C. Suryanarayana and M.G. Norton, X-ray Diffraction A Practical Approach, 1st ed., Springer, Berlin, 1998, p 207–222

    Google Scholar 

  41. Z. Oksiuta, E.B. Courjault, and N. Baluc, Relation Between Microstructure and Charpy Impact Properties of an Elemental and Pre-alloyed 14Cr ODS Ferritic Steel Powder After Hot Isostatic Pressing, J. Mater. Sci., 2010, 45, p 3921–3930

    Article  CAS  Google Scholar 

  42. U. Prakash, R.A. Buckley, and H. Jones, Formation of B2 Antiphase Domains in Rapidly Solidified Fe-Al Alloys, Philos. Mag. A, 1991, 64, p 797–805

    Article  CAS  Google Scholar 

  43. H.K.D.H. Bhadeshia, Recrystallisation of Practical Mechanically Alloyed Iron-Base and Nickel-Base Superalloys, Mater. Sci. Eng. A, 1997, 223, p 64–77

    Article  Google Scholar 

  44. A.G. Junceda, M.H. Mayoral, and M. Serrano, Influence of the Microstructure on the Tensile and Impact Properties of a 14Cr ODS Steel Bar, Mater. Sci. Eng. A, 2012, 556, p 696–703

    Article  Google Scholar 

  45. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie, Tensile Properties and Deformation Mechanisms of a 14Cr ODS Ferritic Steel, J. Nucl. Mater., 2010, 405, p 95–100

    Article  CAS  Google Scholar 

  46. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys, J. Nucl. Mater., 2005, 341, p 103–114

    Article  CAS  Google Scholar 

  47. U. Prakash, T. Raghu, S.V. Kamat, and A.A. Gokhale, The Effect of Mg Addition on Microstructure and Tensile and Stress Rupture Properties of a P/M Al-Fe-Ce Alloy, Scr. Mater., 1998, 39, p 867–872

    Article  CAS  Google Scholar 

  48. U. Prakash, T. Raghu, A.A. Gokhale, and S.V. Kamat, Microstructure and Mechanical Properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce Alloys, J. Mater. Sci., 1999, 34, p 5061–5065

    Article  CAS  Google Scholar 

  49. D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, High Yttria Ferritic ODS Steels Through Powder Forging, J. Nucl. Mater., 2017, 488, p 75–82

    Article  CAS  Google Scholar 

  50. C.C. Montes and H.K.D.H. Bhadeshia, Influence of Deformation on Recrystallization of an Yttrium Oxide Dispersion-Strengthened Iron Alloy (PM2000), Adv. Eng. Mater., 2003, 5(4), p 232–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author (Deepak Kumar) would like to thank MHRD (Ministry of Human Resource Development), GOI (Government of India) for providing the fellowship. This research work was funded by the BRNS (Board of Research in Nuclear Sciences), Bombay (Project No: 2010/36/68-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Prakash, U., Dabhade, V.V. et al. Mechanical Alloying and Powder Forging of 18%Cr Oxide Dispersion-Strengthened Steel Produced Using Elemental Powders. J. of Materi Eng and Perform 28, 242–253 (2019). https://doi.org/10.1007/s11665-018-3801-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3801-0

Keywords

Navigation