Skip to main content
Log in

Structure and Properties of Nano-Scale Oxide-Dispersed Iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Bulk samples of pure iron and yttria dispersed iron with and without titanium (i.e., Fe, Fe-Y2O3, and Fe-Y2O3-Ti) were prepared by hot extrusion of high-energy ball-milled powders. An examination of the microstructure using TEM revealed that the addition of titanium resulted in the reduction of the dispersoid size with a concomitant increase in the volume fraction of the dispersoids. As a result, Fe-Y2O3-Ti exhibited a substantial increase in hardness and tensile properties as compared to Fe and Fe-Y2O3. The higher hardness and strength of Fe-Y2O3-Ti is shown to be due to the presence of finer and higher number density of Y-Ti-O complex oxides. Dynamic strain aging in the temperature range of 423 K to 573 K (150 °C to 300 °C) was observed in all the compositions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Zakine, C. Prioul and D. Francois: Mater. Sci. Eng. A, 1996, vol. 219, pp. 102-108.

    Article  Google Scholar 

  2. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta and H. Nakashima: J. Nucl. Sc. Technol., 2002, vol. 39, pp. 872-879.

    Article  Google Scholar 

  3. M.J. Alinger, G.R. Odette and G.E. Lucas: J. Nucl. Mater., 2002, vol. 307–311, pp. 484-489.

    Article  Google Scholar 

  4. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik and K. Miyahara: J. Nucl. Mater., 2002, vol. 307–311, pp. 773-777.

    Article  Google Scholar 

  5. A. Alamo, V. Lambard, X. Averty and M.H. Mathon: J. Nucl. Mater., 2004, vol. 329–333, pp. 333-337.

    Article  Google Scholar 

  6. D.S. Gelles: J. Nucl. Mater., 1996, vol. 233–237, pp. 293-298.

    Article  Google Scholar 

  7. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749-757.

    Article  Google Scholar 

  8. V. de Castro, T. Leguey, M.A. Monge, A. Muñoz, R. Pareja, D.R. Amador, J.M. Torralba, and M. Victoria: J. Nucl. Mater., 2003, vol. 322, pp. 228-234.

    Article  Google Scholar 

  9. M. Klimiankou, R. Lindau and A. Moslang: J. Crystal Growth, 2003, vol. 249, pp. 381-387.

    Article  Google Scholar 

  10. A. Ramar, Z. Oksiuta, N. Baluc and R. Schaublin: Fusion Eng. Des., 2007, vol. 82, pp. 2543-2549.

    Article  Google Scholar 

  11. C. Cayron, E. Rath, I. Chu and S. Launois: J. Nucl. Mater., 2004, vol. 335, pp. 83-102.

    Article  Google Scholar 

  12. M. Ratti, D. Leuvrey, M.H. Mathon, and Y. de Carlan: J. Nucl. Mater., 2009, vol. 386–388, pp. 540–543.

    Article  Google Scholar 

  13. M. K. Miller, D. T. Hoelzer, E. A. Kenik and K. F. Russell: J. Nucl. Mater., 2004, vol. 329-333, pp. 338-341.

    Article  Google Scholar 

  14. M.J. Alinger, S.C. Glade, B.D. Wirth, G.R. Odette, T. Toyama, Y. Nagai and M. Hasegawa: Mater. Sci. Eng. A, 2009, vol. 518, pp. 150-157.

    Article  Google Scholar 

  15. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito and T. Narita: J. Nucl. Mater., 2004, vol. 329-333, pp. 372-376.

    Article  Google Scholar 

  16. T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1600-1603.

    Article  Google Scholar 

  17. K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens: J. Nucl. Mater., 2009, vol. 385, pp. 308-311.

    Article  Google Scholar 

  18. J.H. Schneibel and S. Shim: Mater. Sci. Eng. A, 2008, vol. 488, pp. 134-138.

    Article  Google Scholar 

  19. R. Vijay, M. Nagini, M. Ramakrishna, J. Joardar, A.V. Reddy and G. Sundararajan: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1611-1620.

    Article  Google Scholar 

  20. S.W. Kim, T. Shobu, S. Ohtsuka, T. Kaito, M. Inoue and M. Ohnuma: Mater. Trans., 2009, vol. 50, pp. 917-921.

    Article  Google Scholar 

  21. S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. kaito and T. Narita: J. Nucl. Mater., 2007, vol. 367-370, pp. 160-165.

    Article  Google Scholar 

  22. A. Raman, N. Baluc and R. Schaublin: J. Nucl. Mater., 2009, vol. 386-388, pp. 515-519.

    Google Scholar 

  23. G.E. Dieter: Mechanical Metallurgy, 3rd Ed, McGraw-Hill Book Co., London, 1988, pp. 212-219.

    Google Scholar 

  24. J. Ribis, Y. deCarlan: Acta Mater., 2012, vol. 60, pp. 238-252.

    Article  Google Scholar 

  25. L.F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y.W. Bao, T. Komatsu, and K.Niihara: Scripta Mater., 2011, vol. 64, pp. 548–551.

    Article  Google Scholar 

  26. M. Srinivas, S.V. Kamat, and P. Rama Rao: Mater. Sci. Eng. A, 2007, vol. 443, pp. 132-141.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. G.V.R. Reddy for carrying out SEM examination. They are grateful to Dr. S.V. Kamat, Defence Metallurgical Research Laboratory, Hyderabad, for helpful suggestions during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sundararajan.

Additional information

Manuscript submitted June 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijay, R., Nagini, M., Sarma, S.S. et al. Structure and Properties of Nano-Scale Oxide-Dispersed Iron. Metall Mater Trans A 45, 777–784 (2014). https://doi.org/10.1007/s11661-013-2019-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2019-x

Keywords

Navigation