Skip to main content
Log in

Study of Hot Tearing During Steel Solidification Through Ingot Punching Test and Its Numerical Simulation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experimental and numerical studies of hot tearing formation in steel are reported. On the one hand, an ingot punching test is presented. It consists in the application of a deformation at the surface of a solidifying 450 kg steel ingot. The experimental parameters are the displacement of the pressing tool, together with its velocity, leading to variations of a global strain rate. On the other hand, three-dimensional finite element thermomechanical modeling of the test is used. The time evolution of the strain tensor serves to compute an index to evaluate the susceptibility to create hot tears. It is based on the integration of a hot tearing criterion (HTC) that compares the local accumulation of strain with the expression of a critical value proposed in the literature. The main variable of the criterion is the brittleness temperature range (BTR) that refers to the solidification interval during which strain accumulates and creates hot cracks or tears. Detailed comparison of the simulation results with the measurements reveals the importance of the BTR for the prediction as well as excellent capabilities of the HTC to predict the formation of hot tears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. J. Campbell: Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991

    Google Scholar 

  2. 2. M. Wintz, M. Bobadilla and M. Jolivet : La Revue de Métallurgie, 1994, vol. 4, pp. 105-114

    Google Scholar 

  3. 3. R. Pierer, C. Bernhard and C. Chimani : La Revue de Métallurgie, 2007, vol. 2, pp. 72-83

    Article  Google Scholar 

  4. D.G. Eskin, S. Suyitno and L. Katgerman : Progress in Materials Science, 2004 vol. 49, pp. 629-711

    Article  Google Scholar 

  5. M. Braccini: Doctotal Thesis, Institut National Polytechnique de Grenoble, 2000.

  6. 6. A.B. Phillion, S.L. Cockcroft and P.D. Lee: Acta Mater., 2008, vol. 56, pp. 4328-4338

    Article  Google Scholar 

  7. 7. M. Sistaninia, A.B. Phillion, J.M. Drezet and M. Rappaz : Metall. Mater. Trans. A, 2011, vol. 42, pp. 239-248

    Article  Google Scholar 

  8. J.F. Zaragoci, L. Silva, M. Bellet, and C.A. Gandin: Proc. MCWASP XIII, 13th Int. Conf. on Modelling of Casting, Welding and Advanced Solidification Processes, Schladming (Austria), June 17–22, 2012, A. Ludwig, M. Wu, A. Kharicha, eds., IOP Conference Series 33 (2012) 012054

  9. 9. T.W. Clyne and G.J. Davies: Solidification and Casting of Metals, TMS, Warrendale, PA, 1977, pp. 275-278

    Google Scholar 

  10. 10. N.N. Prokhorov: Russian Castings Production, 1962, vol. 2, pp. 172-175

    Google Scholar 

  11. 11. B. Rogberg: Scand. J. Metall., 1983, vol. 12, pp. 51-66

    Google Scholar 

  12. 12. S. Nagata, T. Matsumiya, K. Ozawa and T. Ohashi: ISIJ Int, 1990, vol. 76 (2), pp. 214-221

    Google Scholar 

  13. A. Yamanaka, K. Nakajima, K. Yasumoto, H. Kawashima, and K. Nakai: Proc. 5th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, 1991, M. Rappaz, M.R. Ozgu, and K.W. Mahin, eds., TMS, pp. 279–84.

  14. 14. Y.M. Won, T.J. Yeo, D.J. Seol and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31, pp. 779-794

    Article  Google Scholar 

  15. 15. M. Bellet, O. Cerri, M. Bobadilla and Y. Chastel: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2705-2717

    Article  Google Scholar 

  16. 16. M. Rappaz, J.M. Drezet and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449-456

    Article  Google Scholar 

  17. 17. H. Sato, T. Kitagawa, K. Murakami and T. Kawawa: Tetsu to Hagane, 1975, vol. 61, S471

    Google Scholar 

  18. 18. K. Miyamura, A. Ochi, K. Kanamaru and N. Kaneko: Tetsu to Hagane, 1976, vol. 62, S482

    Google Scholar 

  19. 19. K. Marukawa, M. Kawasaki, T. Kimura and S. Ishimura: Tetsu to Hagane, 1978, vol. 64 S661

    Google Scholar 

  20. 20. K. Narita, T. Mori, K. Ayata, J. Miyazaki and M. Fujimaki: Tetsu to Hagane, 1978, vol. 64, S152

    Google Scholar 

  21. 21. Y. Sugitani, M. Nakamura, H. Kawashima and M. Kawasaki: Tetsu to Hagane, 1980, vol. 66, S193

    Google Scholar 

  22. 22. M. Rappaz, A. Jacot and W.J. Boettinger: Metall. Mater. Trans. A, 2003, vol. 34, pp. 467-479

    Article  Google Scholar 

  23. 23. N. Wang, S. Mokadem, M. Rappaz and W. Kurz: Acta Materialia, 2004, vol. 52, pp. 3173-3182

    Article  Google Scholar 

  24. 24. H. Fujii, T. Ohashi and T. Hiromoto: Tetsu to Hagane, 1976, vol.62, S484

    Google Scholar 

  25. 25. T. Matsumiya, M. Ito, H. Kajioka, S. Yamaguchi and Y. Nakamura: ISIJ Int, 1986, vol. 26, pp. 540-546

    Article  Google Scholar 

  26. 26. Q. Chen and B. Sundman: Mater. Trans., 2002, vol. 43, pp. 551-559

    Article  Google Scholar 

  27. 27. M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University, 1998

    Google Scholar 

  28. 28. T. Koshikawa, C.A. Gandin, M. Bellet, H. Yamamura and M. Bobadilla: ISIJ Int, 2014, vol. 54, pp. 1274-1282

    Article  Google Scholar 

  29. 29. T. Carozzani, C.A. Gandin, H. Digonnet, M. Bellet, K. Zaidat and Y. Fautrelle: Metall. Mater. Trans. A, 2013, vol. 44, pp. 873-887

    Article  Google Scholar 

  30. 30. C.A. Gandin: Acta Mater., 2000, vol. 48, pp. 2483-2501

    Article  Google Scholar 

  31. 31. H. Fujii, T. Ohashi and T. Hiromoto: Tetsu to Hagane, 1976, vol.62, pp. 1813-1822

    Google Scholar 

  32. 32. M. Bellet and V.D. Fachinotti: Comput. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 4355-4381

    Article  Google Scholar 

  33. M. Bellet, O. Jaouen and I. Poitrault (2005) Int J Num Methods Heat Fluid Flow 15: 120-142

    Article  Google Scholar 

  34. B.G. Thomas and M. Bellet: ASM Handbook Volume 15: Casting, Division 4: Modeling and Analysis of Casting Processes, American Society of Metals, 2008, pp. 449–61.

  35. T. Koshikawa, M. Bellet, H. Yamamura and M. Bobadilla: SteelSim2013, 5th Int. Conf. on Modelling and Simulation of Metallurgical Processes in Steelmaking, Ostrava, Czech Republic, September 10–12, 2013, DVD published by the Czech Metallurgical Society.

  36. Iron and Steel Institute of Japan: Mechanical behavior in Continuous Casting, ISIJ, 1985, NCID:BN03702225 (Citation Information by National institute of informatics: CiNii)

  37. 37. A. Palmaers, A. Etienne and J. Mignon: Stahl und Eisen, 1979, vol. 99, pp. 1039-1050

    Google Scholar 

  38. P. Shi: TCS steels/Fe-alloys database V60. Thermo-Calc Software AB, Stockholm, 2008

    Google Scholar 

  39. Thermo-Calc (2013) TCCS manuals. Thermo-Calc software AB, Stockholm

    Google Scholar 

  40. 40. British Iron and Steel Research Association: Physical constants of some commercial steels at elevated temperatures (based on measurements made at the National Physical Laboratory, Teddington), Butterworths Scientific Publications, 1953

    Google Scholar 

  41. 41. G. Lesoult, C.A. Gandin and N.T. Niane: Acta. Mater., 2003, vol. 51, pp. 5263-5283

    Article  Google Scholar 

  42. 42. V.D. Fachinotti, S. Le Corre, N. Triolet, M. Bobadilla and M. Bellet: Int. J. Num. Meth. Eng., 2006, vol. 67, pp. 1341-1384

    Article  Google Scholar 

  43. T. Koshikawa, M. Bellet, C.A. Gandin, H. Yamamura and M. Bobadilla: Proc. MCWASP XIV, 14th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, Awaji Island, Japan, 21–26 June 2015, H. Yasuda, ed., IOP Conference Series: Materials Science and Engineering 84 012096

Download references

Acknowledgments

This work is supported by Nippon Steel & Sumitomo Metal Corporation (NSSMC) in a collaborative project with ArcelorMittal (AM). The authors are deeply grateful to Dr Olivier Jaouen and Dr Frédéric Costes from TRANSVALOR (Mougins, France), for their kind help and discussion about thermomechanical modeling using software THERCAST®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Koshikawa.

Additional information

Manuscript submitted January 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshikawa, T., Bellet, M., Gandin, CA. et al. Study of Hot Tearing During Steel Solidification Through Ingot Punching Test and Its Numerical Simulation. Metall Mater Trans A 47, 4053–4067 (2016). https://doi.org/10.1007/s11661-016-3564-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3564-x

Keywords

Navigation