Skip to main content
Log in

The Effect of Microstructural Variation on the Hydrogen Environment-Assisted Cracking of Monel K-500

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of microstructural variation on hydrogen environment-assisted cracking (HEAC) of Monel K-500 was evaluated using five nominally peak-aged lots of material tested under slow-rising stress intensity loading while immersed in NaCl solution under cathodic polarizations. Minimal variation in HEAC resistance among material lots was observed for an applied potential of −950 mVSCE (E app, vs saturated calomel), whereas lot-to-lot variability in the fracture morphology demonstrates a significant difference in the HEAC resistance at the less negative potential of −850 mVSCE, suggesting that relatively severe H environments produce sufficient crack-tip H to minimize the impact of metallurgical differences. Sensitivity analyses accomplished by varying the inputs used in decohesion-based, micromechanical models imply significant variations in HEAC resistance are possible for realistic changes in grain boundary toughness, hydrogen uptake behavior, and yield strength. Grain size, impurity segregation (including the effects of gettering elements), grain boundary character/connectivity, and crack path tortuosity are also considered in the context of HEAC susceptibility. Yield strength, global hydrogen content, as well as impurity segregation to grain boundaries, especially boron and sulfur, are speculatively considered to be the dominant contributions in determining HEAC resistance. Modifications that would incorporate the effects of grain boundary segregation are proposed for the K TH model; detailed validation of such changes require high-fidelity and quantitative inputs for the degree of grain boundary segregation. Regardless, fracture mechanics-based HEAC results, detailed microstructural characterization, and micromechanical modeling were successfully coupled to gain insights into the influences governing the microstructure-dependent HEAC susceptibility of Monel K-500.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. HEAC testing of the component specimens were performed in the as-received conditions. A companion study suggests that H-charging that occurred during field service may lead to a total internal H-concentration, CH-total, on the order of 5 wppm which is similar to the 6 wppm at the crack tip at −850 mVSCE obtained for the Allvac material lot.[18] The effects of the precharged hydrogen is discussed in more detail elsewhere.[124] However, HEAC testing of the component specimens in an inert environment did not show H-enhanced IG cracking due to the precharged H-content.

References

  1. NACE Standard MR0175-1998: Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment, NACE, Houston, TX, 1998

  2. ASTM Standard G30, 1997: Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens, ASTM International, West Conshohocken, PA, 2009.

  3. ASTM Standard G39, 1999: Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens, ASTM International, West Conshohocken, PA, 2011.

  4. ASTM Standard G129, 2000: Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, ASTM International, West Conshohocken, PA, 2013.

  5. ASTM Standard E1681, 2003: Standard Test Method for Determining Threshold Stress Intensity for Environment-Assisted Cracking of Metallic Materials, ASTM International, West Conshohocken, PA, 2013.

  6. ASTM Standard F1624: Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique, ASTM International, West Conshohocken, PA, 2012.

  7. R. E. Butler: in Engineering with Copper-Nickel Alloys, Metals Society, London, 1988, pp. 79–84.

  8. C. A. Clark, S. Driscoll, and P. Guha: Br. Corros. J., 1992, vol. 27, pp. 157-60.

    Article  Google Scholar 

  9. G. A. Scott: in 17th Offshore Technology Conference, Paper No. OTC 5050, Houston, 1985.

  10. R. N. Tuttle and A. W. Thompson: Control of Hydrogen Embrittlement in Deep Gas Wells,Metallurgical Society AIME, United States, 1976.

    Google Scholar 

  11. L. H. Wolfe and M. W. Joosten: SPE Prod. Eng., 1988, vol. 3, pp. 382-86.

    Article  Google Scholar 

  12. J.R. Scully and M.G. Vassilaros: The Hydrogen Embrittlement Susceptibility of Monel Alloy K-500, presented at the Electrochemical Society Fall 1983 Meeting, Washington, DC, 1983.

  13. R.D. Bayles, T. Lemieux, F. Martin, D. Lysogorski, T. Newbauer, W. Hyland, B.A. Green, E. Hogan, and P. Stencel: Naval Surface Treament Center MR2010 Proceedings Presentation, 2010.

  14. L. H. Wolfe, C. C. Burnette, and M. W. Joosten: Mater. Perform., 1993, vol. 32, pp. 14-21.

    Google Scholar 

  15. J.A. Lillard: Ph.D Dissertation, University of Virginia, Charlottesville, VA, 1998.

  16. W.K. Boyd and W.E. Berry: in Stress Corrosion Cracking of Metals—A State Art, ASTM STP 518, American Society for Testing and Materials, 1972, pp. 58–78.

  17. R.P. Gangloff: in Comprehensive Structural Integrity, I. Milne, R. O. Ritchie, and B. Karihaloo, eds., Elsevier, New York, NY, 2003, pp. 31–101.

  18. R. P. Gangloff, H. M. Ha, J. T. Burns, and J. R. Scully: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3814-34.

    Article  Google Scholar 

  19. R.P. Gangloff: in Environment Induced Cracking of Metals, S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Rebak, eds., Elsevier, Oxford, 2006, pp. 6337–49.

  20. R. P. Gangloff: Corrosion, 2016, in press.

  21. J.A. Harter: http://www.afgrow.net/downloads/pdownload.aspx, 2007.

  22. W. A. Grell and P. J. Laz: Int. J. Fatigue, 2010, vol. 32, pp. 1042-9.

    Article  Google Scholar 

  23. J. Harter: Int. J. Fatigue, 1999, vol. 21, pp. S181-5.

    Article  Google Scholar 

  24. R.P. Gangloff, D.C. Slavik, R.S. Piascik, and R.H. Van Stone: in Small-Crack Test Methods, ASTM STP 1149, M. Larsen and J.E. Allison, eds., ASTM International, West Conshohocken, PA, 1992, pp. 116–68.

  25. J. Ai, H. M. Ha, R. P. Gangloff, and J. R. Scully: Acta Mater., 2013, vol. 61, 3186-99.

    Article  Google Scholar 

  26. T. Boniszewski and G. Smith: Acta Metall., 1963, vol. 11, pp.165-78.

    Article  Google Scholar 

  27. A. H. Windle and G. C. Smith: Met. Sci. J., 1970, vol. 4, 136-44.

    Article  Google Scholar 

  28. D.H. Lassila and H.K. Birnbaum: Acta Metall., 1986, vol. 34, pp. 1237–43.

    Article  Google Scholar 

  29. D. M. Symons: Eng. Fract. Mech., 2001, vol. 68, pp. 751–71.

    Article  Google Scholar 

  30. S. Bechtle, M. Kumar, B. P. Somerday, M. E. Launey, and R. O. Ritchie: Acta Mater., 2009, vol. 57, pp. 4148–57.

    Article  Google Scholar 

  31. M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis, and I. M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.

    Article  Google Scholar 

  32. W.W. Gerberich: in Gaseous Hydrogen Embrittlement of Materials in Energy Technology, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing, 2012, pp. 209–46.

  33. S. P. Lynch: Metall. Mater. Trans. A, 2013, vol. 44A, p. 1209-29.

    Article  Google Scholar 

  34. S. P. Lynch: Corros. Rev., 2012, vol. 30, pp. 105–23.

    Google Scholar 

  35. Y. Katz, N. Tymiak, and W. W. Gerberich: Eng. Fract. Mech., 2001, vol. 68, pp. 619–46.

    Article  Google Scholar 

  36. Y. Lee and R. P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2174–90.

    Article  Google Scholar 

  37. R.P. Gangloff: in Hydrogen Effects on Materials., B.P. Somerday, P. Sofronis, and R.H. Jones, eds., ASM International, Materials Park, OH, 2009, pp. 1–21.

  38. W. W. Gerberich, R. A. Oriani, M. Lii, X. Chen, and T. Foecke: Philos. Mag. A, 1991, vol. 63, pp. 363–76.

    Article  Google Scholar 

  39. U. Komaragiri, S. R. Agnew, R. P. Gangloff, and M. R. Begley: J. Mech. Phys. Solids, 2008, vol. 56, pp. 3527–40.

    Article  Google Scholar 

  40. R.P. Gangloff: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody and A.W. Thompson, eds., The Minerals, Metals & Materials Society, Warrendale, PA, 2002.

  41. Nickel-Copper-Aluminum Alloy, Wrought (UNS N05500), QQ-N-286G: Department of the Navy, 2000.

  42. J.R. Davis, ed: in Nickel, Cobalt, and Their Alloys: ASM Special Handbook, 2000, pp. 167–88.

  43. G. K. Dey and P. Mukhopadhyay: Mater. Sci. Eng., 1986, vol. 84, pp. 177–89.

    Article  Google Scholar 

  44. G. K. Dey, R. Tewari, P. Rao, S. L. Wadekar, and P. Mukhopadhyay: Metall. Trans. A, 1993, vol. 24, pp. 2709–19.

    Article  Google Scholar 

  45. H. Tada, P.C. Paris, and G.R. Irwin: The Stress Analysis of Cracks Handbook, Paris Productions Incorporated, St. Louis, MO, 1985.

  46. H. H. Johnson: Mater. Res. Stand., 1965, vol. 5, pp. 442–45.

    Google Scholar 

  47. K.-H. Schwalbe and D. Hellmann: J. Test. Eval., 1981, vol. 9, pp. 218–21.

    Article  Google Scholar 

  48. ASTM Standard E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, 2013.

  49. V. Kumar, M. D. German, and C. F. Shih: An Engineering Approach for Elastic-Plastic Fracture Analysis, Electric Power Research Institute, Palo Alto, CA, 1981.

    Book  Google Scholar 

  50. H. M. Ha, J. Ai, and J. R. Scully: Corrosion, 2014, vol. 70, pp. 166–84.

    Article  Google Scholar 

  51. B. A. Kehler and J. R. Scully: Corrosion, 2008, vol. 64, pp. 465–77.

    Article  Google Scholar 

  52. B.C. Rincon Troconis, Z.D. Harris, J.T. Burns, and J.R. Scully: Corrosion, in preparation 2016.

  53. T. L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis, London, 2005.

  54. J.T. Burns, Z.D. Harris, J.D. Dolph, and R.P. Gangloff: Measurement and Modeling of Hydrogen Environment Assisted Cracking in a Ni-Cu-Ti-Al Superalloy,Metall. Mater. Trans. A, in review.

  55. H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps : The Plasticity and Creep of Metals and Ceramics, 1st ed., Pergamon Press, Oxford Oxfordshire ; New York, 1982.

    Google Scholar 

  56. J. Waldman, R.P. Gangloff, and J.T. Burns: Final Report, STTR Topic No. N08-T010 (Phase II Option I), Navmar Applied Sciences Corportation, Warminster, PA, 2014.

  57. K. A. Nibur, B. P. Somerday, C. San Marchi, J. W. Foulk, M. Dadfarnia, and P. Sofronis: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 248-69.

    Article  Google Scholar 

  58. E. Richey and R.P. Gangloff: in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, ASTM STP 1401, R. D. Kane, ed., ASTM, West Conshohocken, PA, 2000, pp. 104–27.

  59. M. L. Martin, I. M. Robertson, and P. Sofronis: Acta Mater., 2011, vol. 59, pp. 3680–87.

    Article  Google Scholar 

  60. ASTM Standard E112: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013.

  61. E.E. Underwood: Quantitative Stereology, Addison-Wesley Pub. Co., Reading, Mass., 1970.

  62. J.R. Scully: in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, ASTM STP 1401, R. D. Kane, ed., ASTM, West Conshohocken, PA, 2000, pp. 40–69.

  63. T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095–4115.

    Article  Google Scholar 

  64. P. Lejcek: in Grain Boundary Segregation in Metals, P. Lejcek, ed., Springer, Berlin, 2010.

  65. A. J. Wilkinson, G. Meaden, and D. J. Dingley: Ultramicroscopy, 2006, vol. 106, pp. 307–13.

    Article  Google Scholar 

  66. C. D. Taylor, M. Neurock, and J. R. Scully: J. Electrochem. Soc., 2011, vol. 158, pp. F36–44.

    Article  Google Scholar 

  67. C. L. Briant, H. C. Feng, and C. J. McMahon: Metall. Trans. A, 1978, vol. 9, pp. 625–33.

    Article  Google Scholar 

  68. G. M. Pressouyre: Acta Met., 1980, vol. 28, pp. 895–911.

    Article  Google Scholar 

  69. A. Turnbull, R. G. Ballinger, I. S. Hwang, and M. M. Morra: Metall. Mater. Trans. A, 1992, vol. 23A.

  70. J. P. Hirth: Metall. Mater. Trans. A, 1980, vol. 11, pp. 861–90.

    Article  Google Scholar 

  71. D. Li, R. P. Gangloff, and J. R. Scully: Metall. Mater. Trans. A, 2004, vol. 35, pp. 849–64.

    Article  Google Scholar 

  72. J. E. Angelo, N. R. Moody, and M. I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.

    Article  Google Scholar 

  73. H. Huang and W. W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 639–47.

    Article  Google Scholar 

  74. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl: Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  Google Scholar 

  75. S. Kobayashi, T. Maruyama, S. Tsurekawa, and T. Watanabe: Acta Mater., 2012, vol. 60, pp. 6200–12.

    Article  Google Scholar 

  76. R. M. Latanision and H. Opperhauser: Metall. Trans., 1974, vol. 5, pp. 483–92

    Article  Google Scholar 

  77. A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, and X. Feaugas: Scr. Mater., 2012, vol. 66, pp. 37–40.

    Article  Google Scholar 

  78. J. R. Scully: MRS Bull., 1999, vol. 24, pp. 36–42.

    Article  Google Scholar 

  79. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, pp. 1–24.

  80. B. Geddes: in Superalloys: Alloying and Performance, B. Geddes, H. Leon, and H. Huang, eds., ASTM International, West Conshohocken, PA, 2010, pp. 59–109.

  81. D. A. Woodford: Energy Mater., 2006, vol. 1, pp. 59–79.

    Article  Google Scholar 

  82. W. F. Smith: Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, 1993.

    Google Scholar 

  83. J. N. DuPont, J. C. Lippold, and S. D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, Hoboken, N.J., 2009.

    Book  Google Scholar 

  84. W. B. Kent: J. Vac. Sci. Technol., 1974, vol. 11, pp. 1038–46.

    Article  Google Scholar 

  85. E.S. Huron, K.R. Bain, D.P. Mourer, J.J. Schirra, P.L. Reynolds, and E.E. Montero: in Superalloys 2004, K A Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Shirra, and S. Walston, eds., TMS, 2004.

  86. J.M. Walshe, K.P. Gumz, and N.P. Anderson: in Quanitative Surface Analysis of Materials, ASTM STP 643, N.S. McIntyre, ed., ASTM, 1978, pp. 72–82.

  87. W. Swiatnicki, S. Lartigue, M. Biscondi, and D. Bouchet: J. Phys. Colloq., 1990, vol. 51, pp. 341–46.

    Google Scholar 

  88. D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P. P. Choi: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 253–61.

    Article  Google Scholar 

  89. R. P. Messmer and C. L. Briant: Acta Metall., 1982, vol. 30, pp. 457–67.

    Article  Google Scholar 

  90. A. Kimura and H. K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 757–66.

    Article  Google Scholar 

  91. M.E. Natishan and M. Wagenhofer: in Fatigue and Fracture Mechanics: Twenty-Ninth Volume, ASTM STP 1332, T. L. Panontin and S. D. Sheppard, eds., ASTM, West Conshohocken, PA, 1999, pp. 384–92.

  92. M.E. Natishan and W.C. Porr: in Structural Integrity of Fasteners, ASTM STP 1236, P. M. Toor, ed., ASTM, Philadelphia, PA, 1995, pp. 81–92.

  93. T. S. F. Lee and R. M. Latanision: Metall. Trans. A, 1987, vol. 18, pp. 1653–62.

    Article  Google Scholar 

  94. W. C. Johnson, J. E. Doherty, B. H. Kear, and A. F. Giamei: Scr. Metall., 1974, vol. 8, pp. 971–74.

    Article  Google Scholar 

  95. T. Miyahara, K. Stolt, D. A. Reed, and H. K. Birnbaum: Scr. Metall., 1985, vol. 19, pp. 117–21.

    Article  Google Scholar 

  96. R.H. Jones: in Advances in the Mechanics and Physics of Surfaces, R.M. Latanision and T.E. Fischer, eds., Hardwood Academic Publishers, Chur, Switzerland, 1986, pp. 1–70.

  97. X. Xie, X.F. Liu, J. Dong, Y. Hu, and Z. Xu: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, 1997, pp. 531–42.

  98. C. L. Briant and R. P. Messmer: J. Phys., 1982, vol. 43, pp. 255–69.

    Article  Google Scholar 

  99. G. S. Painter and F. W. Averill: Phys. Rev. Lett., 1987, vol. 58, pp. 234–37.

    Article  Google Scholar 

  100. D. H. Lassila and H. K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 1815–22.

    Article  Google Scholar 

  101. C. Sarioglu, C. Stinner, J.R. Blachere, N. Birks, F.S. Pettit, G.H. Meier, and Smiale: in Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, 1996, pp. 71–80.

  102. K. Banerjee: Mater. Sci. Appl., 2011, vol. 2, pp. 1243–55.

    Google Scholar 

  103. H. E. Huang and C. H. Koo: Mater. Trans., 2004, vol. 45, pp. 554–61.

    Article  Google Scholar 

  104. S. Yamaguchi, H. Kobayashi, T. Matsumiya, and S. Hayami: Met. Technol., 1979, vol. 6, pp. 170–75.

    Article  Google Scholar 

  105. J. J. deBarbadillo: in Superalloys 1976, TMS, 1976, pp. 95–107.

  106. R. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, MA, 2006.

  107. R. W. Smith, W. T. Geng, C. B. Geller, R. Wu, and A. J. Freeman: Scr. Mater., 2000, vol. 43, pp. 957–61.

    Article  Google Scholar 

  108. B. Ladna and H. K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 745–55.

    Article  Google Scholar 

  109. H. H. Kart and T. Cagin: J. Achievements Mater. Manuf. Eng., 2008, vol. 30, pp. 177–81.

    Google Scholar 

  110. N. R. Moody, R. E. Stoltz, and M. W. Perra: Scr. Metall., 1985, vol. 20, pp. 119–23.

    Article  Google Scholar 

  111. A. Oudriss, J. Bouhattate, C. Savall, J. Creus, X. Feaugas, F. Martin, P. Laghoutaris, and J. Chene: Procedia Mater. Sci., 2014, vol. 3, pp. 2030–34.

    Article  Google Scholar 

  112. J. F. Lessar and W. W. Gerberich: Metall. Trans. A, 1976, vol. 7, pp. 953–60.

    Article  Google Scholar 

  113. A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, and X. Feaugas: Acta Mater., 2012, vol. 60, pp. 6814–28

    Article  Google Scholar 

  114. S. Suresh: Metall. Trans. A, 1983, vol. 14, pp. 2375–85.

    Article  Google Scholar 

  115. R.O. Ritchie and S. Suresh: Metall. Trans. A, 1982, vol. 13, pp. 937–40.

    Article  Google Scholar 

  116. J. E. King: Met. Sci., 1982, vol. 16, pp. 345–55.

    Article  Google Scholar 

  117. M. Seita, J. P. Hanson, S.Gradečak, and M. J. Demkowicz: Nat. Commun., 2015, vol. 6, p. 6164.

    Article  Google Scholar 

  118. D. B. Wells, J. Stewart, A. W. Herbert, P. M. Scott, and D. E. Williams: Corrosion, 1989, vol. 45, pp. 649-60.

    Article  Google Scholar 

  119. V. K. S. Shante and K. Kirkpatrick: Adv. Phys., 1971, vol. 20, pp. 325-57.

    Article  Google Scholar 

  120. C. A. Schuh, R. W. Minich, and M. Kumar: Philos. Mag., 2003, vol. 83, pp. 711-26.

    Article  Google Scholar 

  121. A. Roy, E. Perfect, W. M. Dunne, and L. D. McKay: J. Geophys. Res. Solid Earth, 2007, vol. 112, pp. B12201-9.

    Article  Google Scholar 

  122. J. Jabra, M. Romios, J. Lai, E. Lee, M. Setiawan, E. W. Lee, J. Witters, N. Abourialy, J. R. Ogren, R. Clark, T. Oppenheim, W. E. Frazier, and O. S. Es-Said: J. Mater. Eng. Perform., 2006, vol. 15, pp. 601-7.

    Article  Google Scholar 

  123. M. Yamaguchi, M. Shiga, and H. Kaburaki: Mater. Trans., 2006, vol. 47, pp. 2682-9.

    Article  Google Scholar 

  124. J. Dolph: Master’s Thesis, University of Virginia, Charlottesville, VA, 2015.

Download references

Acknowledgments

This research was sponsored by the Office of Naval Research (ONR) Grant N00014-12-1-0506 with Dr. Airan Perez as Scientific Officer. Helpful discussions with Professor Richard Gangloff and fracture mechanics testing by Ms. Christina Kaminksy are gratefully acknowledged. Z.D.H. gratefully acknowledges the support of the ALCOA Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary D. Harris.

Additional information

Manuscript submitted December 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, Z.D., Dolph, J.D., Pioszak, G.L. et al. The Effect of Microstructural Variation on the Hydrogen Environment-Assisted Cracking of Monel K-500. Metall Mater Trans A 47, 3488–3510 (2016). https://doi.org/10.1007/s11661-016-3486-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3486-7

Keywords

Navigation