Skip to main content

Advertisement

Log in

Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The density-functional theory and phase-field dislocation model have been used to compute and simulate the strength of θ′ plates and precipitate-dislocation interactions in an Al-4Cu-0.05Sn (wt pct) alloy that is strengthened exclusively by coherent θ′ precipitate plates. The density-functional theory computation indicates that a 1.06 GPa applied stress is required for a dislocation to shear through a θ′ plate, which is far larger than the critical resolved shear stress increment (ΔCRSS) of the peak-aged sample of the alloy. The ΔCRSS values of the alloy aged for 0.5, 3, 48, and 168 hours at 473 K (200 °C) are computed by the phase-field dislocation model, and they agree well with experimental data. The phase-field simulations suggest that the ΔCRSS value increases with an increase in plate aspect ratio and number density, and that the change of ΔCRSS is not sensitive to the variation of the distribution of θ′ plate diameters when the average diameter of θ′ plates is fixed, and that the coherency strain of θ′ plates does not contribute much to ΔCRSS of the alloy when the θ′ number density and aspect ratio are below certain values. The simulations further suggest that, when the volume fraction of θ′ is constant, the ΔCRSS value for a random spatial distribution of the θ′ plates is 0.78 times of that for a regular spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed. Arnold, London, 1995.

    Google Scholar 

  2. B. C. Muddle, S. P. Ringer, and I. J. Polmear: Trans. Mater. Res. Soc. Jpn., 1994; vol. 19B, pp. 999.

    Google Scholar 

  3. S. P. Ringer and K. Hono: Mater. Characterisation, 2000; vol. 44, pp. 101-31.

    Article  Google Scholar 

  4. L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie, and B. C. Muddle: Acta Mater., 2012; vol. 60, pp. 633-44.

    Article  Google Scholar 

  5. J. F. Nie and B. C. Muddle: J. Phase Equilib., 1998; vol. 19, pp. 543-51.

    Article  Google Scholar 

  6. J.R. Pickens, H.F. Heubaum, T.J. Langan, and L.A. Kramer: Proc. of the 5th Int. Conf. on Aluminum-Lithium Alloys, vol. 1989, E.A. Starke, T.H. Sanders, eds., Mater. and Comp. Eng. Publications, Birmingham, p. 1397.

  7. S. C. Weakley-Bollin, W. Donlon, C. Wolverton, J. W. Jones and J. E. Allison: Metall. Mater. Trans. A 2004, vol. 35A, pp. 2407-18.

    Article  Google Scholar 

  8. L. Bourgeois, J. F. Nie and B. C. Muddle: Phil. Mag. 2005, vol. 85, 3487-3509.

    Article  Google Scholar 

  9. L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie and B. C. Muddle: Acta Mater. 2011, vol. 59, pp. 7043-50.

    Article  Google Scholar 

  10. A. Deschamps, B. Decreus, F. de Geuser, T. Dorin and M. Weyland: Acta Mater. 2013, vol. 61, pp. 4010-21.

    Article  Google Scholar 

  11. W. A. Cassada, G. J. Shiflet and E. A. Starke: Metall. Trans. A 1991, vol. 22A, pp. 299-306.

    Article  Google Scholar 

  12. S. P. Ringer, B. C. Muddle and I. J. Polmear: Metall. Mater. Trans. A 1995, vol. 26A, pp. 1659-71.

    Article  Google Scholar 

  13. B. C. Muddle and I. J. Polmear: Acta Metall. Mater. 1989, vol. 37, pp. 777-89.

    Article  Google Scholar 

  14. L. Reich, M. Murayama and K. Hono: Acta Mater. 1998, vol. 46, pp. 6053-62.

    Article  Google Scholar 

  15. J. M. Slicock, T. J. Heal, and H. K. Hardy: J. Inst. Metals, 1953, vol. 82, pp. 239-45.

    Google Scholar 

  16. I. J. Polmear: Mater. Sci. Technol., 1994, vol. 10, pp. 1-16.

    Article  Google Scholar 

  17. D. J. Bacon, U. F. Kocks, and R. O. Scattergood: Phil. Mag. 1973, vol. 28, pp. 1241-63.

    Article  Google Scholar 

  18. S. Queyreau, G. Monnet and B. Devincre: Acta Mater., 2010, vol. 58, pp. 5586-95.

    Article  Google Scholar 

  19. P.B. Hirsch and F.J. Humphreys: The Physics of Strength and Plasticity, A.S. Argon, ed., MIT Press, Cambridge (MA), 1969.

  20. A. W. Zhu and E. A. Starke: Acta Mater., 1999; vol. 47, pp. 3263-70.

    Article  Google Scholar 

  21. J. da Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson: Acta Mater., 2008; vol. 56, pp. 6109-22.

    Article  Google Scholar 

  22. M. F. Ashby: Acta Metall., 1966; vol. 14, pp. 678-81.

    Google Scholar 

  23. L.M. Brown and R.K. Ham: Strengthening Methods in Crystals. Applied Science Publishers, London, 1971.

  24. M.F. Ashby: in The Physics of Strength and Plasticity, A.S. Argon, ed. MIT Press, Cambridge (MA),1969, pp. 143–58.

  25. U. F. Kocks: Phil. Mag., 1966; vol. 13, pp. 541-66.

    Article  Google Scholar 

  26. U. F. Kocks: Can. J. Phys., 1967; vol. 45, pp. 737-55.

    Article  Google Scholar 

  27. E. Hornbogen and E. A. Starke: Acta Metall. Mater., 1993; vol. 41, pp. 1-16.

    Article  Google Scholar 

  28. A. J. Ardell: Metall. Trans. A, 1985; vol. 16A, pp. 2131-65.

    Article  Google Scholar 

  29. A. J. E. Foreman and M.J. Makin: Phil. Mag., 1966; vol. 14, pp. 911-24.

    Article  Google Scholar 

  30. J. F. Nie and B. C. Muddle: Acta Mater., 2008; vol. 56, pp. 3490-3501.

    Article  Google Scholar 

  31. R. L. Fullman: Trans. AIME 1953; vol. 197, pp. 447-52.

    Google Scholar 

  32. G. Kresse and J. Furthmuller: Phys. Rev. B 1996; vol. 54, pp. 11169-86.

    Article  Google Scholar 

  33. G. Kresse and J. Furthmuller: Comput. Mater. Sci. 1996; vol. 6, pp. 15-50.

    Article  Google Scholar 

  34. P. E. Bloch: Phys. Rev. B 1994; vol. 50, pp. 17953-89.

    Article  Google Scholar 

  35. G. Kresse and G. Joubert: Phys. Rev. B 1999; vol. 59, pp. 1758-75.

    Article  Google Scholar 

  36. J. P. Perdew and Y. Wang: Phys. Rev. B 1992; vol. 45, pp. 13244-49.

    Article  Google Scholar 

  37. J. P. Perdew, J. A. Chevary, S. H. Vosko: Phys. Rev. B 1992; vol. 46, pp. 6671-87.

    Article  Google Scholar 

  38. J. H. Monkhorst, J. D. Pack: Phys. Rev. B 1976; vol. 13, pp. 5188-92.

    Article  Google Scholar 

  39. S. Koda and K. Matsuura: J. Inst. of Metals 1963; vol. 91, pp. 229-36.

    Google Scholar 

  40. J. Harford, B. von Sydow, G. Wahnstrom, B. I. Lundqvist: Phys Rev B 1998; vol. 58, pp. 2487-96.

    Article  Google Scholar 

  41. A. G. Khachaturyan: Theory of Structural Transformations in Solids. New York: John Wiley & Sons; 1983.

    Google Scholar 

  42. C. Shen, Y. Wang: Acta Mater. 2003; vol. 51, pp. 2595-610.

    Article  Google Scholar 

  43. C. Shen, Y. Wang: Acta Mater. 2004; vol. 52, pp. 683-91.

    Article  Google Scholar 

  44. N. Zhou, C. Shen, M. J. Mills, J. Li, Y. Wang: Acta Mater. 2011; vol. 59, pp. 3484-97.

    Article  Google Scholar 

  45. Y. U. Wang, Y. M. Jin, A. M. Cuitino, A. G. Khachaturyan: Acta Mater. 2001; vol. 49, pp. 1847-57.

    Article  Google Scholar 

  46. S. M. Allen, J. W. Cahn: Acta Metall. 1979; vol. 27, pp. 1085-101.

    Article  Google Scholar 

  47. A. Deschamps, T. J. Bastow, F. de Geuser, A. J. Hill, C. R. Hutchinson: Acta Mater. 2011; vol. 59, pp. 2918-27.

    Article  Google Scholar 

  48. Y. Wang, J. Li: Acta Mater. 2010; vol. 58, pp. 1212-35.

    Article  Google Scholar 

  49. C. Shen, J. Lu, Y. Wang: Acta Mater. 2014; vol. 74, pp. 125-131.

    Article  Google Scholar 

  50. A. Hunter, R. F. Zhang, I. J. Beyerlein: J. Appl. Phys. 2014; vol. 115, 134314.

    Article  Google Scholar 

  51. Y.Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, Y. Wang, Acta Mater. 2012; vol. 60, pp. 4819-32.

    Article  Google Scholar 

  52. H. Liu, Y. Gao, Y. M. Zhu, Y. Wang, J. F. Nie, Acta Mater. 2014; vol. 68, pp. 133-150.

    Article  Google Scholar 

  53. Y.Gao, N. Zhou, D. Wang, Y. Wang, Acta Mater. 2014; vol. 68, pp. 93-105.

    Article  Google Scholar 

  54. C. Shen, Q. Chen, Y. Wen, J. P. Simmons, Y. Wang, Scripta Mater. 2004; vol. 50, pp. 1023-1028.

    Article  Google Scholar 

  55. C. Shen, Q. Chen, Y. Wen, J.P. Simmons, Y. Wang, Scripta Mater. 2004; vol. 50, pp. 1029-1034.

    Article  Google Scholar 

  56. J. Tiaden, B. Nestler, H. J. Diepers, and I. Steinbach, Physica D 1998; vol. 115, pp. 73-86.

    Article  Google Scholar 

  57. S. G. Kim, W. T. Kim, T. Suzuki, Phys. Rev. E 1999; vol. 60, pp. 7186-97.

    Article  Google Scholar 

  58. I. M. Lifshitz, V. V. Slyozov: J. Phys. Chem. Solids 1961; vol. 19, pp. 35-50.

    Article  Google Scholar 

  59. W. M. Stobbs, G. R. Purdy: Acta Metall. 1978; vol. 26, pp. 1069-81.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support from the Australian Research Council. Y.W. also acknowledges the support from the ARC International Fellowship. H.L. wishes to acknowledge the support from Monash University in the form of Monash Graduate Scholarship and International Postgraduate Research Scholarship. Y.G. and Y.W. acknowledge the financial support from US Department of Energy, Office of Basic Energy Sciences under grant DE-SC0001258 and the National Science Foundation under NSF DMREF Program, Grant No. DMR-1435483.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunzhi Wang or Jian-Feng Nie.

Additional information

Manuscript submitted August 21, 2014.

Appendices

Appendix A

To test whether the change of ΔCRSS is related to the distribution of planar diameters of precipitates, different types of planar diameter distributions are selected:

1.1 Degenerate distribution

In this case, the planar diameters of all precipitates are the same and equal to \( \bar{d} \) p, and \( \bar{d} \) p = 47.35 nm. Thus, f(d p) has the following form:

$$ f\left( {d_{\text{p}} } \right) = \left\{ {\begin{array}{*{20}c} {1 \quad d_{\text{p}} = 47.35} \\ { 0 \quad d_{\text{p}} \ne 47.35} \\ \end{array} } \right. . $$

1.2 Bernoulli Distribution

Two arbitrary values are assumed for the planar diameters of precipitates: d p1 = 10.0 nm and d p2 = 84.7 nm. To make \( \bar{d} \) p equal to 47.35 nm, the number of precipitates of each size is equal. Thus, f(d p) can be expressed as

$$ f\left( {d_{\text{p}} } \right) = \left\{ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {0.5 \quad d_{\text{p}} = 10.0} \\ {0.5 \quad d_{\text{p}} = 84.7} \\ \end{array} } \\ {0 \qquad {\text{other}}} \\ \end{array} } \right. . $$

1.3 Uniform Distribution

The d p values are uniformly distributed between 10 and 84.7 nm, i.e., the probability for a precipitate to have a planar diameter of any value between 10 and 84.7 nm is equal. Thus, f(d p) has the following form:

$$ f\left( {d_{\text{p}} } \right) = \left\{ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\frac{1}{84.7 - 10} \quad 10 < d_{\text{p}} < 84.7} \\ {0 \qquad \quad d_{\text{p}} < 10 \;{\text{or}} \quad d_{\text{p}} > 84.7} \\ \end{array} } \\ \end{array} } \right. . $$

Appendix B

The α-Al matrix has a face-centered cubic structure with a = 0.404 nm, while θ′ has a tetragonal structure, with a = 0.404 nm and c = 0.58 nm.[39] As described in Section I, the orientation relationship between θ′ and α-Al phases is such that (100) θ′ //(100) α and [001] θ′ //[001] α . For the given lattice parameters, transformation strains are zero along the [100] α and [010] α directions. Along the [001] α direction, the 2c θ′ :3c Al matching configuration is used,[59] and the corresponding transformation strain is 0.043. Therefore, if the [100] α , [010] α , and [001] α directions are set as the x 0, y 0, and z 0 directions, respectively, then the transformation matrices \( T_{i}^{0} \) of the three θ′ variants are

$$ T_{1}^{0} = \left( {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & {0.9570} \\ \end{array} } \right) , $$
$$ T_{2}^{0} = \left( {\begin{array}{*{20}c} {0.9570} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right) , $$
$$ T_{3}^{0} = \left( {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {0.9570} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right) . $$

\( T_{i}^{0} \) needs to be transformed into the xyz coordinate system that is used in the current study, i.e., x: [11\( {\bar{\text{2}}} \)] α , y: [\( {\bar{\text{1}}} \)10] α, and z: [111] α . For the x 0 y 0 z 0 to xyz transformation, the transformation matrix R is

$$ R = \left( {\begin{array}{*{20}c} {0.4082} & {0.4082} & { - 0.8165} \\ { - 0.7071} & {0.7071} & 0 \\ {0.5774} & {0.5774} & {0.5774} \\ \end{array} } \right) . $$

After the change of the coordinate system, the transformation matrices become

$$ T_{1} = \left( {\begin{array}{*{20}c} {0.9713} & 0 & {0.0203} \\ 0 & 1 & 0 \\ {0.0203} & 0 & {0.9857} \\ \end{array} } \right) , $$
$$ T_{2} = \left( {\begin{array}{*{20}c} {0.9928} & {0.0124} & { - 0.0101} \\ {0.0124} & {0.9785} & {0.0176} \\ { - 0.0101} & {0.0176} & {0.9857} \\ \end{array} } \right) , $$
$$ T_{3} = \left( {\begin{array}{*{20}c} {0.9928} & { - 0.0124} & { - 0.0101} \\ { - 0.0124} & {0.9785} & { - 0.0176} \\ { - 0.0101} & { - 0.0176} & {0.9857} \\ \end{array} } \right) . $$

The SFTS of the α-Al to θ′ transformation can be obtained from the transformation matrice according to the following relationship:

$$ \varepsilon \left( p \right) = \frac{{T_{p}^{\prime} T_{p} - I}}{2}, \quad p = 1, 2, 3. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gao, Y., Qi, L. et al. Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy. Metall Mater Trans A 46, 3287–3301 (2015). https://doi.org/10.1007/s11661-015-2895-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2895-3

Keywords

Navigation