Metallurgical and Materials Transactions A

, Volume 46, Issue 7, pp 3287–3301 | Cite as

Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy

  • Hong Liu
  • Yipeng Gao
  • Liang Qi
  • Yunzhi WangEmail author
  • Jian-Feng NieEmail author


The density-functional theory and phase-field dislocation model have been used to compute and simulate the strength of θ′ plates and precipitate-dislocation interactions in an Al-4Cu-0.05Sn (wt pct) alloy that is strengthened exclusively by coherent θ′ precipitate plates. The density-functional theory computation indicates that a 1.06 GPa applied stress is required for a dislocation to shear through a θ′ plate, which is far larger than the critical resolved shear stress increment (ΔCRSS) of the peak-aged sample of the alloy. The ΔCRSS values of the alloy aged for 0.5, 3, 48, and 168 hours at 473 K (200 °C) are computed by the phase-field dislocation model, and they agree well with experimental data. The phase-field simulations suggest that the ΔCRSS value increases with an increase in plate aspect ratio and number density, and that the change of ΔCRSS is not sensitive to the variation of the distribution of θ′ plate diameters when the average diameter of θ′ plates is fixed, and that the coherency strain of θ′ plates does not contribute much to ΔCRSS of the alloy when the θ′ number density and aspect ratio are below certain values. The simulations further suggest that, when the volume fraction of θ′ is constant, the ΔCRSS value for a random spatial distribution of the θ′ plates is 0.78 times of that for a regular spatial distribution.


Burger Vector Slip Plane Habit Plane Elastic Strain Energy Coherency Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the support from the Australian Research Council. Y.W. also acknowledges the support from the ARC International Fellowship. H.L. wishes to acknowledge the support from Monash University in the form of Monash Graduate Scholarship and International Postgraduate Research Scholarship. Y.G. and Y.W. acknowledge the financial support from US Department of Energy, Office of Basic Energy Sciences under grant DE-SC0001258 and the National Science Foundation under NSF DMREF Program, Grant No. DMR-1435483.


  1. 1.
    I. J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed. Arnold, London, 1995.Google Scholar
  2. 2.
    B. C. Muddle, S. P. Ringer, and I. J. Polmear: Trans. Mater. Res. Soc. Jpn., 1994; vol. 19B, pp. 999.Google Scholar
  3. 3.
    S. P. Ringer and K. Hono: Mater. Characterisation, 2000; vol. 44, pp. 101-31.CrossRefGoogle Scholar
  4. 4.
    L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie, and B. C. Muddle: Acta Mater., 2012; vol. 60, pp. 633-44.CrossRefGoogle Scholar
  5. 5.
    J. F. Nie and B. C. Muddle: J. Phase Equilib., 1998; vol. 19, pp. 543-51.CrossRefGoogle Scholar
  6. 6.
    J.R. Pickens, H.F. Heubaum, T.J. Langan, and L.A. Kramer: Proc. of the 5th Int. Conf. on Aluminum-Lithium Alloys, vol. 1989, E.A. Starke, T.H. Sanders, eds., Mater. and Comp. Eng. Publications, Birmingham, p. 1397.Google Scholar
  7. 7.
    S. C. Weakley-Bollin, W. Donlon, C. Wolverton, J. W. Jones and J. E. Allison: Metall. Mater. Trans. A 2004, vol. 35A, pp. 2407-18.CrossRefGoogle Scholar
  8. 8.
    L. Bourgeois, J. F. Nie and B. C. Muddle: Phil. Mag. 2005, vol. 85, 3487-3509.CrossRefGoogle Scholar
  9. 9.
    L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie and B. C. Muddle: Acta Mater. 2011, vol. 59, pp. 7043-50.CrossRefGoogle Scholar
  10. 10.
    A. Deschamps, B. Decreus, F. de Geuser, T. Dorin and M. Weyland: Acta Mater. 2013, vol. 61, pp. 4010-21.CrossRefGoogle Scholar
  11. 11.
    W. A. Cassada, G. J. Shiflet and E. A. Starke: Metall. Trans. A 1991, vol. 22A, pp. 299-306.CrossRefGoogle Scholar
  12. 12.
    S. P. Ringer, B. C. Muddle and I. J. Polmear: Metall. Mater. Trans. A 1995, vol. 26A, pp. 1659-71.CrossRefGoogle Scholar
  13. 13.
    B. C. Muddle and I. J. Polmear: Acta Metall. Mater. 1989, vol. 37, pp. 777-89.CrossRefGoogle Scholar
  14. 14.
    L. Reich, M. Murayama and K. Hono: Acta Mater. 1998, vol. 46, pp. 6053-62.CrossRefGoogle Scholar
  15. 15.
    J. M. Slicock, T. J. Heal, and H. K. Hardy: J. Inst. Metals, 1953, vol. 82, pp. 239-45.Google Scholar
  16. 16.
    I. J. Polmear: Mater. Sci. Technol., 1994, vol. 10, pp. 1-16.CrossRefGoogle Scholar
  17. 17.
    D. J. Bacon, U. F. Kocks, and R. O. Scattergood: Phil. Mag. 1973, vol. 28, pp. 1241-63.CrossRefGoogle Scholar
  18. 18.
    S. Queyreau, G. Monnet and B. Devincre: Acta Mater., 2010, vol. 58, pp. 5586-95.CrossRefGoogle Scholar
  19. 19.
    P.B. Hirsch and F.J. Humphreys: The Physics of Strength and Plasticity, A.S. Argon, ed., MIT Press, Cambridge (MA), 1969.Google Scholar
  20. 20.
    A. W. Zhu and E. A. Starke: Acta Mater., 1999; vol. 47, pp. 3263-70.CrossRefGoogle Scholar
  21. 21.
    J. da Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson: Acta Mater., 2008; vol. 56, pp. 6109-22.CrossRefGoogle Scholar
  22. 22.
    M. F. Ashby: Acta Metall., 1966; vol. 14, pp. 678-81.Google Scholar
  23. 23.
    L.M. Brown and R.K. Ham: Strengthening Methods in Crystals. Applied Science Publishers, London, 1971.Google Scholar
  24. 24.
    M.F. Ashby: in The Physics of Strength and Plasticity, A.S. Argon, ed. MIT Press, Cambridge (MA),1969, pp. 143–58.Google Scholar
  25. 25.
    U. F. Kocks: Phil. Mag., 1966; vol. 13, pp. 541-66.CrossRefGoogle Scholar
  26. 26.
    U. F. Kocks: Can. J. Phys., 1967; vol. 45, pp. 737-55.CrossRefGoogle Scholar
  27. 27.
    E. Hornbogen and E. A. Starke: Acta Metall. Mater., 1993; vol. 41, pp. 1-16.CrossRefGoogle Scholar
  28. 28.
    A. J. Ardell: Metall. Trans. A, 1985; vol. 16A, pp. 2131-65.CrossRefGoogle Scholar
  29. 29.
    A. J. E. Foreman and M.J. Makin: Phil. Mag., 1966; vol. 14, pp. 911-24.CrossRefGoogle Scholar
  30. 30.
    J. F. Nie and B. C. Muddle: Acta Mater., 2008; vol. 56, pp. 3490-3501.CrossRefGoogle Scholar
  31. 31.
    R. L. Fullman: Trans. AIME 1953; vol. 197, pp. 447-52.Google Scholar
  32. 32.
    G. Kresse and J. Furthmuller: Phys. Rev. B 1996; vol. 54, pp. 11169-86.CrossRefGoogle Scholar
  33. 33.
    G. Kresse and J. Furthmuller: Comput. Mater. Sci. 1996; vol. 6, pp. 15-50.CrossRefGoogle Scholar
  34. 34.
    P. E. Bloch: Phys. Rev. B 1994; vol. 50, pp. 17953-89.CrossRefGoogle Scholar
  35. 35.
    G. Kresse and G. Joubert: Phys. Rev. B 1999; vol. 59, pp. 1758-75.CrossRefGoogle Scholar
  36. 36.
    J. P. Perdew and Y. Wang: Phys. Rev. B 1992; vol. 45, pp. 13244-49.CrossRefGoogle Scholar
  37. 37.
    J. P. Perdew, J. A. Chevary, S. H. Vosko: Phys. Rev. B 1992; vol. 46, pp. 6671-87.CrossRefGoogle Scholar
  38. 38.
    J. H. Monkhorst, J. D. Pack: Phys. Rev. B 1976; vol. 13, pp. 5188-92.CrossRefGoogle Scholar
  39. 39.
    S. Koda and K. Matsuura: J. Inst. of Metals 1963; vol. 91, pp. 229-36.Google Scholar
  40. 40.
    J. Harford, B. von Sydow, G. Wahnstrom, B. I. Lundqvist: Phys Rev B 1998; vol. 58, pp. 2487-96.CrossRefGoogle Scholar
  41. 41.
    A. G. Khachaturyan: Theory of Structural Transformations in Solids. New York: John Wiley & Sons; 1983.Google Scholar
  42. 42.
    C. Shen, Y. Wang: Acta Mater. 2003; vol. 51, pp. 2595-610.CrossRefGoogle Scholar
  43. 43.
    C. Shen, Y. Wang: Acta Mater. 2004; vol. 52, pp. 683-91.CrossRefGoogle Scholar
  44. 44.
    N. Zhou, C. Shen, M. J. Mills, J. Li, Y. Wang: Acta Mater. 2011; vol. 59, pp. 3484-97.CrossRefGoogle Scholar
  45. 45.
    Y. U. Wang, Y. M. Jin, A. M. Cuitino, A. G. Khachaturyan: Acta Mater. 2001; vol. 49, pp. 1847-57.CrossRefGoogle Scholar
  46. 46.
    S. M. Allen, J. W. Cahn: Acta Metall. 1979; vol. 27, pp. 1085-101.CrossRefGoogle Scholar
  47. 47.
    A. Deschamps, T. J. Bastow, F. de Geuser, A. J. Hill, C. R. Hutchinson: Acta Mater. 2011; vol. 59, pp. 2918-27.CrossRefGoogle Scholar
  48. 48.
    Y. Wang, J. Li: Acta Mater. 2010; vol. 58, pp. 1212-35.CrossRefGoogle Scholar
  49. 49.
    C. Shen, J. Lu, Y. Wang: Acta Mater. 2014; vol. 74, pp. 125-131.CrossRefGoogle Scholar
  50. 50.
    A. Hunter, R. F. Zhang, I. J. Beyerlein: J. Appl. Phys. 2014; vol. 115, 134314.CrossRefGoogle Scholar
  51. 51.
    Y.Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, Y. Wang, Acta Mater. 2012; vol. 60, pp. 4819-32.CrossRefGoogle Scholar
  52. 52.
    H. Liu, Y. Gao, Y. M. Zhu, Y. Wang, J. F. Nie, Acta Mater. 2014; vol. 68, pp. 133-150.CrossRefGoogle Scholar
  53. 53.
    Y.Gao, N. Zhou, D. Wang, Y. Wang, Acta Mater. 2014; vol. 68, pp. 93-105.CrossRefGoogle Scholar
  54. 54.
    C. Shen, Q. Chen, Y. Wen, J. P. Simmons, Y. Wang, Scripta Mater. 2004; vol. 50, pp. 1023-1028.CrossRefGoogle Scholar
  55. 55.
    C. Shen, Q. Chen, Y. Wen, J.P. Simmons, Y. Wang, Scripta Mater. 2004; vol. 50, pp. 1029-1034.CrossRefGoogle Scholar
  56. 56.
    J. Tiaden, B. Nestler, H. J. Diepers, and I. Steinbach, Physica D 1998; vol. 115, pp. 73-86.CrossRefGoogle Scholar
  57. 57.
    S. G. Kim, W. T. Kim, T. Suzuki, Phys. Rev. E 1999; vol. 60, pp. 7186-97.CrossRefGoogle Scholar
  58. 58.
    I. M. Lifshitz, V. V. Slyozov: J. Phys. Chem. Solids 1961; vol. 19, pp. 35-50.CrossRefGoogle Scholar
  59. 59.
    W. M. Stobbs, G. R. Purdy: Acta Metall. 1978; vol. 26, pp. 1069-81.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations