Skip to main content
Log in

Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

  • Symposium: Advances in Solidification of Metallic Alloys under External Fields
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Yoshikawa and K. Morita: J. Cryst. Growth, 2009, vol. 311, pp. 776-779.

    Article  Google Scholar 

  2. K. Arafune, E. Ohishi, H. Sai, Y. Ohshita, and M. Yamaguchi: J. Cryst. Growth, 2007, vol. 308, pp. 5-9.

    Article  Google Scholar 

  3. S. Zheng, W. Chen, J. Cai, J. Li, C. Chen, and X. Luo: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1268-1273.

    Article  Google Scholar 

  4. J. Wu, Y. Dai, W Ma, B. Yang, D. Liu, Y. Wang, and K. Wei: Chin. J. Vac. Sci. Technol., 2010, vol. 1, pp. 43–49.

    Google Scholar 

  5. X. Gu, X. Yu, and D. Yang: Sep. Purif. Technol., 2011, vol. 77, pp. 33-39.

    Article  Google Scholar 

  6. K. Morita and T. Yoshikawa: T. Nonferr. Metal. Soc., 2011, vol. 21, pp. 685-690.

    Article  Google Scholar 

  7. Y. Nishi, Y. Kang, and K. Morita: Mater. Trans., 2010, vol. 51, pp. 1227-1230.

    Article  Google Scholar 

  8. T. Yoshikawa and K. Morita: ISIJ. Int., 2005, vol. 45, pp. 967-971.

    Article  Google Scholar 

  9. J. Li, Z. Guo, H. Tang, Z. Wang, and S. Sun: T. Nonferr. Metal. Soc., 2012, vol. 22, pp. 958-963.

    Article  Google Scholar 

  10. J. Jie, Q. Zou, H. Wang, J. Sun, Y. Lu, T. Wang, and T. Li: J. Cryst. Growth, 2014, vol. 399, pp. 43-48.

    Article  Google Scholar 

  11. J. Jie, Q. Zou, J. Sun, Y. Lu, T. Wang, and T. Li: Acta Mater., 2014, vol. 72, pp. 57-66.

    Article  Google Scholar 

  12. S. Wang, L. Zhang, Y. Tian, Y. Li and H. Ling: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1915-1935.

    Article  Google Scholar 

  13. A. Noeppel, A. Ciobanas, X. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zi mmermann, and Y. Fautrelle: Metall. Mater. Trans. B, 2010, vol. 41, pp. 193-208.

    Article  Google Scholar 

  14. S. Eckert, P.A Nikrityuk, B. Willers, D. Räbiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt, and K. Eckert: Eur. Phys. J.Spec. Top., 2013, vol. 220, pp. 123-137.

    Article  Google Scholar 

  15. C. Xu and Q. Jiang: Mater. Sci. Eng. A, 2006, vol. 437, pp. 451-455.

    Article  Google Scholar 

  16. W. Wang, X. Bian, J. Qin, and S. Syliusarenko: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2163-2168.

    Article  Google Scholar 

  17. X. Bian and W. Wang: Mater. Lett., 2000, vol. 44, pp. 54-58.

    Article  Google Scholar 

  18. Y. Zhang, H. Zheng, Y. Liu, L. Shi, R. Xu, and X. Tian: Acta Mater., 2014, vol. 70, pp. 162-173.

    Article  Google Scholar 

  19. W. Yu, G. LÜ, Y. REN, H. Xue and Y. Dai: Trans. Nonferrous. Met. Soc., 2013, vol. 23, pp. 3476-3481.

    Article  Google Scholar 

  20. B. Korojy and H. Fredriksson: T. Indian Inst. Metals, 2009, vol. 62, pp. 361-365.

    Article  Google Scholar 

  21. M. W. Ullah and T. Carlberg: J. Cryst. Growth, 2011, vol. 318, pp. 212-218.

    Article  Google Scholar 

  22. P. Kaur, D.K. Dwivedi, and P.M. Pathak: Int. J. Adv. Manuf. Tech., 2012, vol. 63, pp. 415-420.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC project (No. 51466005 and U1137601), the Key project of Yunnan Provincial Department of Education (2013Z122), the talent training Foundation of Kunming University of Science and Technology (KKZ3201352011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Lv.

Additional information

Manuscript submitted November 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Lv, G., Ma, W. et al. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields. Metall Mater Trans A 46, 2922–2932 (2015). https://doi.org/10.1007/s11661-015-2889-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2889-1

Keywords

Navigation