Skip to main content

Advertisement

Log in

Effect of Vanadium Nitride Precipitation on Martensitic Transformation and Mechanical Properties of CrMnNi Cast Austenitic Steels

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution and mechanical properties of two cast Fe-15Cr-6Mn-3Ni-0.5Si-0.2N-0.1C (concentrations in wt pct) steels containing no vanadium and 0.65 wt pct vanadium were investigated under uniaxial tensile loading for room temperature (RT) and 373 K (100 °C). The alloy development was focused on the formation of nanosized vanadium nitride precipitates in the austenite to serve as obstacles to dislocation motion. The austenitic steels exhibited transformation- and twinning-induced plasticity (TRIP/TWIP) effects and the planar glide of dislocations in the austenite. The triggering stress for the RT strain-induced σ γα formation increased by 190 MPa, and the transformation occurred at higher strain levels due to the presence of VN precipitates. The occurrence of the TWIP effect during tensile testing at 373 K (100 °C) of both steels resulted in engineering strains above 50 pct. The yield strength (YS) of the VN-containing steel was 420 MPa at RT, 52 MPa higher than the vanadium-free alloy. The difference increased to 59 MPa at 373 K (100 °C) with the VN-containing alloy exhibiting a YS of 311 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Krüger, S. Wolf, U. Martin, P. Scheller, A. Jahn, and A. Weiß: DYMAT, 2009, vol. 2, pp. 1069–74.

    Google Scholar 

  2. A. Jahn, A. Kovalev, A. Weiß, and P.R. Scheller: Steel Res. Int., 2011, vol. 82, pp. 1108–12.

    Article  Google Scholar 

  3. M. Sawada, K. Adachi, and T. Maeda: ISIJ Int., 2011, vol. 51, pp. 991–98.

    Article  Google Scholar 

  4. S. Sadeghpour, A. Kermanpur, and A. Najafizadeh: Mater. Sci. Eng. A, 2013, vol. 584, pp. 177–83.

    Article  Google Scholar 

  5. W. Shi, L. Li, C.-X. Yang, R.-Y. Fu, L. Wang, and P. Wollants: Mater Sci Eng A, 2006, vol. 429, pp. 247–51.

    Article  Google Scholar 

  6. I. E. Locci and G. M. Michal: Metall. Trans. A, 1989, vol. 20A, pp. 237–45.

    Article  Google Scholar 

  7. G. Gottstein: in Phys. Found. Mater. Sci., Springer, Berlin Heidelberg, 2004, pp. 197–302.

  8. H.-W. Yen, M. Huang, C.P. Scott, and J.-R. Yang: Scripta Mater., 2012, vol. 66, pp. 1018–23.

    Article  Google Scholar 

  9. E. G. Moghaddam, N. Varahram, and P. Davami: Mater. Sci. Eng. A, 2012, vol. 532, pp. 260–66.

    Article  Google Scholar 

  10. E. G. Moghaddam, N. Karimzadeh, N. Varahram, and P. Davami: Mater. Sci. Eng. A, 2013, vol. 585, pp. 422–29.

    Article  Google Scholar 

  11. C. Scott, B. Remy, J.-L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, and C. Curfs: Int. J. Mater. Res., 2011, vol. 102, pp. 538–49.

    Article  Google Scholar 

  12. D.-B. Park, M.-Y. Huh, W.-S. Jung, J.-Y. Suh, J.-H. Shim, and S.-C. Lee: J. Alloys Compd., 2013, vol. 574, pp. 532–38.

    Article  Google Scholar 

  13. D.-B. Park, S.-M. Hong, K.-H. Lee, M.-Y. Huh, J.-Y. Suh, S.-C. Lee, and W.-S. Jung: Mater. Charact., 2014, vol. 93, pp. 52–61.

    Article  Google Scholar 

  14. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  Google Scholar 

  15. W. Bleck, A. Frehn, S. Kranz, A. Franke, and A. Weiss: Steel Res., 2000, vol. 71, pp. 303–9.

    Google Scholar 

  16. O Grässel, L Krüger, G Frommeyer, and L.W Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  17. H. Gutte and A. Weiss: State Doctorate, TU Bergakademie Freiberg, Freiberg, 2011.

  18. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.

    Article  Google Scholar 

  19. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 184–87.

    Article  Google Scholar 

  20. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1688–1704.

    Article  Google Scholar 

  21. S Martin, S. Wolf, U. Martin, and L. Krüger: Solid State Phenom., 2011, vol. 172-174, pp. 172–77.

    Article  Google Scholar 

  22. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  Google Scholar 

  23. L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebherr, and N. Akdut: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 307–17.

    Article  Google Scholar 

  24. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  25. P. Franke and H. J. Seifert: Binary Systems and Ternary Systems from C-Cr-Fe to Cr-Fe-W: Thermodynamic Properties of Inorganic Materials Compiled by SGTE, Subvolume C: Ternary Steel Systems, Phase Diagrams and Phase Transition Data, Springer, Berlin, London, 2012.

    Google Scholar 

  26. A. Weidner, A. Yanina, S. Guk, R. Kawalla, and H. Biermann: Steel Res. Int., 2011, vol. 82, pp. 990–97.

    Article  Google Scholar 

  27. J. J. Irani and R. T. Weiner: Nature, 1965, vol. 205, pp. 795–795.

    Article  Google Scholar 

  28. Miss J. M. Silcock: Acta Metall., 1966, vol. 14, pp. 687–92.

    Google Scholar 

  29. Ö.A. Atasoy, K. Özbaysal, and O.T. Inal: J. Mater. Sci., 1989, vol. 24, pp. 1393–98.

  30. B. Fultz and J. M. Howe: Transmission Electron Microscopy and Diffractometry of Materials (Third Edition), Springer, Heidelberg, 2007.

    Google Scholar 

  31. S. Farjami, K. Hiraga, and H. Kubo: Mater. Trans., 2004, vol. 45, pp. 930–35.

    Article  Google Scholar 

  32. T. Thorvaldsson and G.L. Dunlop: Met. Sci., 1982, vol. 16, pp. 184–90.

    Article  Google Scholar 

  33. H. O. Andrén, A. Henjered, and H. Nordén: J. Mater. Sci., 1980, vol. 15, pp. 2365–68.

    Article  Google Scholar 

  34. M. Wendler, J. Mola, L. Krüger, and A. Weiss: Steel Res. Int., 2014, vol. 85, pp. 803–10.

    Article  Google Scholar 

  35. A. Weiss, H. Gutte, M. Radtke, and P.R. Scheller: WO/2008/009722, Jan. 2008.

  36. G. B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6, pp. 791–95.

    Article  Google Scholar 

  37. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  Google Scholar 

  38. Q.-X. Dai, A.-D. Wang, X.-N. Cheng, and X.-M. Luo: Chin. Phys., 2002, vol. 11, pp. 596–600.

    Article  Google Scholar 

  39. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 391–400.

    Article  Google Scholar 

  40. S.-J. Kim, T.-H. Lee, and C.-S. Oh: Steel Res. Int., 2009, vol. 80, pp. 467–72.

    Google Scholar 

  41. T.-H. Lee, H.-Y. Ha, J.-Y. Kang, J. Moon, C.-H. Lee, and S.-J. Park: Acta Mater., 2013, vol. 61, pp. 7399–7410.

    Article  Google Scholar 

  42. G.L. Huang, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1989, vol. 20A, pp. 1239–45.

    Article  Google Scholar 

  43. M. Wendler, J. Mola, B. Reichel, L. Krüger, and A. Weiß: in HNS 2014, Hamburg, 2014.

  44. M. Wendler, J. Mola, B. Reichel, L. Krüger, and A. Weiß: in HMnS 2014, Aachen, 2014, pp. 407–10.

  45. A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner, and H. Biermann: Acta Mater., 2013, vol. 61, pp. 2434–49.

    Article  Google Scholar 

  46. E. Hornbogen and H. Kreye: J. Mater. Sci., 1982, vol. 17, pp. 979–88.

    Article  Google Scholar 

  47. A. K. Vasudévan and R. D. Doherty: Acta Metall., 1987, vol. 35, pp. 1193–1219.

    Article  Google Scholar 

  48. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  Google Scholar 

  49. T.S Byun, N Hashimoto, and K Farrell: Acta Mater., 2004, vol. 52, pp. 3889–99.

    Article  Google Scholar 

  50. S. Wolf: Doctoral Thesis, Shaker, Aachen, 2012.

  51. J. Bouquerel, K. Verbeken, and B. C. De Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56.

    Article  Google Scholar 

  52. L. Samek, E. De Moor, J. Penning, and B. C. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research by the German Research Foundation (DFG) within the framework of the Collaborative Research Center 799 (CRC 799). Special thanks are due to Dr.-Ing. A. Franke for his assistance in the fracture-surface examinations of the studied steels in SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wendler.

Additional information

Manuscript submitted August 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendler, M., Reichel, B., Eckner, R. et al. Effect of Vanadium Nitride Precipitation on Martensitic Transformation and Mechanical Properties of CrMnNi Cast Austenitic Steels. Metall Mater Trans A 47, 139–151 (2016). https://doi.org/10.1007/s11661-014-2716-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2716-0

Keywords

Navigation