Skip to main content
Log in

Structure Formation in Vanadium-Alloyed Chromium-Manganese Steel with a High Concentration of Interstitial Atoms C + N = 1.9 wt % during Electron-Beam Additive Manufacturing

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the present paper, the method of electron-beam additive manufacturing is used to produce specimens of vanadium-alloyed chromium-manganese steel with a high concentration of interstitial atoms (C + N = 1.9 wt %). Microstructure and mechanical properties of the specimens are analyzed against the specimens obtained by conventional metallurgy and thermal-mechanical treatments. It is experimentally shown that additive manufacturing and subsequent heat treatment do not affect the concentration of interstitial atoms in the steel specimens, do not change the mechanism of steel crystallization, and do not provide high-temperature ferrite formation. Regardless of the production method, specimens of vanadium-alloyed chromium-manganese steel with a high concentration of interstitial atoms have a heterophase structure composed of austenite and dispersed phases. In addition to vanadium and chromium carbonitrides, which are characteristic of the conventionally fabricated steel and do not dissolve during thermal-mechanical treatment, repeated heating and cooling during additive manufacturing cause the formation of plates of chromium and manganese carbonitrides within austenitic grains and globular intermetallides (Fe, Cr, Mn, and V) along grain boundaries. The high concentration of interstitial atoms promotes high solid-solution and precipitation hardening of additively manufactured specimens, resulting in a higher yield stress (σ0.2 = 880 MPa) as compared to conventionally fabricated specimens (σ0.2 = 840 MPa). At the same time, the presence of dispersed phases leads to premature fracture of the specimens, so that the additively manufactured steel, even after heat treatment, has low plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sanjay Kumar, Additive Manufacturing Processes, Springer Int. Publ., 2020.

  2. Frazier, W.E., Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  3. Li, N., Huang, S., Zhang, G., Qin, R., Liu, W., Xiong, H., Shi, G., and Blackburn, J., Progress in Additive Manufacturing on New Materials: A Review, J. Mater. Sci. Technol., 2019, vol. 35(2), pp. 242–269. https://doi.org/10.1016/j.jmst.2018.09.002

    Article  Google Scholar 

  4. Dymnich, E., Romanova, V.A., Balokhonov, R.R., Zinovieva, O.S., and Zinoviev, A.V., A Numerical Study of the Stress-Strain Behavior of Additively Manufactured Aluminum-Silicon Alloy at the Scale of Dendritic Structure, Phys. Mesomech., 2021, vol. 24, no. 1, pp. 32–39. https://doi.org/10.1134/S1029959921010057

    Article  Google Scholar 

  5. Fortuna, S.V., Gurianov, D.A., Kalashnikov, K.N., Chumaevskii, A.V., Mironov, Y.P., and Kolubaev, E.A., Directional Solidification of a Nickel-Based Superalloy Product Structure Fabricated on Stainless Steel Substrate by Electron Beam Additive Manufacturing, Metall. Mater. Trans. A, 2021, vol. 52(2), pp. 857–870. https://doi.org/10.1007/s11661-020-06090-8

    Article  Google Scholar 

  6. Kalashnikov, K.N., Rubtsov, V.E., Savchenko, N.L., Kalashnikova, T.A., Osipovich, K.S., Eliseev, A.A., and Chumaevskii, A.V., The Effect of Wire Feed Geometry on Electron Beam Freeform 3D Printing of Complex-Shaped Specimens from Ti-6Al-4V Alloy, Int. J. Adv. Manuf. Technol., 2019, vol. 105(7–8), pp. 3147–3156. https://doi.org/10.1007/s00170-019-04589-y

    Article  Google Scholar 

  7. Utyaganova, V., Filippov, A., Tarasov, S., Shamarin, N., Gurianov, D., Vorontsov, A., Chumaevskii, A., Fortuna, S., Savchenko, N., Rubtsov, V., and Kolubaev, E., Characterization of AA7075/AA5356 Gradient Transition Zone in an Electron Beam Wire-Feed Additive Manufactured Specimen, Mater. Charact., 2021, vol. 172, p. 110867. https://doi.org/10.1016/j.matchar.2020.110867

    Article  Google Scholar 

  8. Filippov, A.V., Khoroshko, E.S., Shamarin, N.N., Savchenko, N.L., Moskvichev, E.N., Utyaganova, V.R., Kolubaev, E.A., Smolin, A.Y., and Tarasov, S.Y., Characterization of Gradient CuAl–B4C Composites Additively Manufactured Using a Combination of Wire-Feed and Powder-Bed Electron Beam Deposition Methods, J. Alloys Compd., 2021, vol. 859, p. 157824. https://doi.org/10.1016/j.jallcom.2020.157824

    Article  Google Scholar 

  9. Panin, A.V., Kazachenok, M.S., Perevalova, O.B., Sinyakova, E.A., Krukovsky, K.V., and Martynov, S.A., Multiscale Deformation of Commercial Titanium and Ti–6Al–4V Alloy Subjected to Electron Beam Surface Treatment, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 441–451. https://doi.org/10.1134/S1029959918050089

    Article  Google Scholar 

  10. Resnina, N.N., Palani, I.A., Liulchak, P.S., Belyaev, S.P., Mani Prabu, S.S., Jayachandran, S., and Kalganov, V.D., Structure of a 3D Frame-Bridge NiTi Specimen Deposited on a Low Carbon Steel Substrate by Wire Arc Additive Manufacturing, Lett. Mater., 2020, vol. 10(4), pp. 496–500. https://doi.org/10.22226/2410-3535-2020-4-496-500

    Article  Google Scholar 

  11. Lo, K.H., Shek, C.H., and Lai, J.K.L., Recent Developments in Stainless Steels, Mater. Sci. Eng. R. Rep., 2009, vol. 65, pp. 39−104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  Google Scholar 

  12. Bhadeshia, H. and Honeykombe, R., Steels: Microstructure and Properties, Amsterdam: Elsevier, 2006.

  13. Bajaj, P., Hariharan, A., Kini, A., et, al., Steels in Additive Manufacturing: A Review of Their Microstructure and Properties, Mater. Sci. Eng. A, 2020, vol. 772, p. 138633.

    Article  Google Scholar 

  14. Astafurova, E.G., Panchenko, M.Yu., Moskvina, V.A., Maier, G.G., Astafurov, S.V., Melnikov, E.V., Fortuna, A.S., Reunova, K.A., Rubtsov, V.E. and Kolubaev, E.A., Microstructure and Grain Growth Inhomogeneity in Austenitic Steel Produced by Wire-Feed Electron Beam Melting: The Effect of Post-Building Solid-Solution Treatment, J. Mater. Sci., 2020, vol. 55, pp. 9211–9224. https://doi.org/10.1007/s10853-020-04424-w

    Article  ADS  Google Scholar 

  15. Melnikov, E.V., Astafurova, E.G., Astafurov, S.V., Maier, G.G., Moskvina, V.A., Panchenko, M.Yu., Fortuna, A.S., Rubtsov, V.E., and Kolubaev, E.A., Anisotropy of the Tensile Properties in Austenitic Stainless Steel Obtained by Wire-Feed Electron Beam Additive Growth, Lett. Mater., 2019, vol. 9(4), pp. 460–464. https://doi.org/10.22226/2410-3535-2019-4-460-464

    Article  Google Scholar 

  16. Tarasov, S.Yu., Filippov, A.V., Savchenko, N.L., Fortuna, S.V., Rubtsov, V.E., Kolubaev, E.A., and Psakhie, S.G., Effect of Heat Input on Phase Content, Crystalline Lattice Parameter, and Residual Strain in Wire-Feed Electron Beam Additive Manufactured 304 Stainless Steel, J. Adv. Manuf. Technol., 2018, vol. 99, pp. 2353–2363. https://doi.org/10.1007/s00170-018-2643-0

    Article  Google Scholar 

  17. Zhang, X., Zhou, Q., Wang, K., Peng, Y., Ding, J., Kong, J., and Williams, S., Study on Microstructure and Tensile Properties of High Nitrogen Cr-Mn Steel Processed by CMT Wire and Arc Additive Manufacturing, Mater. Des., 2019, vol. 166, p. 107611. https://doi.org/10.1016/j.matdes.2019.107611

    Article  Google Scholar 

  18. Gavriljuk, V.G. and Berns, H., High Nitrogen Steels, Berlin: Springer-Verlag, 1999.

  19. Reed, R.P., Nitrogen in Austenitic Stainless Steels, JOM, 1989, vol. 41, pp. 16–21. https://doi.org/10.1007/BF03220991

    Article  Google Scholar 

  20. Lang, Y., Qu, H., Chen, H., and Weng, Y., Research Progress and Development Tendency of Nitrogen-Alloyed Austenitic Stainless Steels, J. Iron Steel Res. Int., 2015, vol. 22(2), pp. 91–98. https://doi.org/10.1016/S1006-706X(15)60015-2

    Article  Google Scholar 

  21. Speidel, M.O., New Nitrogen-Bearing Austenitic Stainless Steels with High Strength and Ductility, Met. Sci. Heat Treat., 2005, vol. 47, pp. 489–493. https://doi.org/10.1007/s11041-006-0017-y

    Article  ADS  Google Scholar 

  22. Panin, V.E., Narkevich, N.A., Durakov, V.G., and Shulepov, I.A., Control of the Structure and Wear Resistance of a Carbon-Nitrogen Austenitic Steel Coating Produced by Electron Beam Cladding, Phys. Mesomech., 2021, vol. 24, no. 1, pp. 53–60. https://doi.org/10.1134/S1029959921010082

    Article  Google Scholar 

  23. Yang, D., Huang, Y., Fan, J., Jin, M., Peng, Y., and Wang, K., Effect of N2 Content in Shielding Gas on Formation Quality and Microstructure of High Nitrogen Austenitic Stainless Steel Fabricated by Wire and Arc Additive Manufacturing, J. Manuf. Proc., 2021, vol. 61, pp. 261–269. https://doi.org/10.1016/j.jmapro.2020.11.020

    Article  Google Scholar 

  24. Boes, J., Röttger, A., and Theisen, W., Microstructure and Properties of High-Strength C + N Austenitic Stainless Steel Processed by Laser Powder Bed Fusion, Additive Manuf., 2020, vol. 32, p. 101081. https://doi.org/10.1016/j.addma.2020.101081

    Article  Google Scholar 

  25. Lass, E.A., Zhang, F., and Campbell, C.E., Nitrogen Effects in Additively Manufactured Martensitic Stainless Steels: Conventional Thermal Processing and Comparison with Wrought, Metallurg. Mater. Trans. A, 2020, vol. 51, pp. 2318–2332. https://doi.org/10.1007/s11661-020-05703-6

    Article  ADS  Google Scholar 

  26. Naidu, S.V.N. and Singh, T., X-Ray Characterization of Eroded 316 Stainless Steel, Wear, 1993, vol. 166, pp. 141–145. https://doi.org/10.1016/0043-1648(93)90255-K

    Article  Google Scholar 

  27. Astafurov, S.V., Maier, G.G., Tumbusova, I.A., Melnikov, E.V., Moskvina, V.A., Panchenko, M.Yu., Smirnov, A.I., Galchenko, N.K., and Astafurova, E.G., The Effect of Solid-Solution Temperature on Phase Composition, Tensile Characteristics and Fracture Mechanism of V-Containing CrMn-Steels with High Interstitial Content C + N > 1 mass %, Mater. Sci. Eng. A, 2020, vol. 770, p. 138534. https://doi.org/10.1016/j.msea.2019.138534

    Article  Google Scholar 

  28. Lee, S.-J. and Lee, Y.-K., Quantitative Analyses of Ferrite Lattice Parameter and Solute Nb Content in Low Carbon Microalloyed Steels, Scripta Mater., 2005, vol. 52, pp. 973–976. https://doi.org/10.1016/j.scriptamat.2005.01.028

    Article  Google Scholar 

  29. Sapegina, I.V., Dorofeev, G.A., Mokrushina, M.I., Pushkarev, B.E., and Lad’yanov, V.I., High-Nitrogen 23Cr9Mn1N Steel Manufactured by Aluminothermy under Nitrogen Pressure: Structure and Mechanical Properties, Lett. Mater., 2017, vol. 7(2), pp. 137–140. https://doi.org/10.22226/2410-3535-2017-2-137-140

    Article  Google Scholar 

  30. Suuatala, N., Takalo, T., and Moisio, T., The Relationship between Solidification and Microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds, Metall. Trans. A, 1979, vol. 10, pp. 512–514.

    Article  Google Scholar 

  31. Olson, D.L., Prediction of Austenitic Weld Metal Microstructure and Properties, Weld. Res. Suppl., 1985, vol. 64, pp. 281-s–295-s.

    Google Scholar 

  32. Chumlyakov, Y., Kireeva, I., Zakharova, E., Luzginova, N., Sehitoglu, H., and Karaman, I., Strain Hardening and Fracture of Austenitic Steel Single Crystals with High Concentration of Interstitial Atoms, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 274–284. https://doi.org/10.1023/A:1020344700610

    Article  Google Scholar 

  33. Chumlyakov, Yu.I., Kireeva, I.V., Sehitoglu, H., Litvinova, E.I., Zakharova, E.G., and Luzginova, N.V., High-Strength Single Crystals of Austenitic Stainless Steel with Nitrogen Content: Mechanisms of Deformation and Fracture, Mater. Sci. Forum, 1999, vol. 318–320, pp. 395–400. https://doi.org/10.4028/www.scientific.net/MSF.318-320.395

    Article  Google Scholar 

  34. Kartik, B., Veerababu, R., Sundararaman, M., and Satyanaranyana, D.V.V., Effect of High Temperature Ageing on Microstructure and Mechanical Properties of a Nickel-Free High Nitrogen Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, vol. 642, pp. 288–296. https://doi.org/10.1016/j.msea.2015.07.011

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Tech.) N.K. Galchenko and Cand. Sci. (Phys.-Math.) S.Yu. Nikonov for their help in the specimen fabrication.

Funding

The work was carried out within the Government Statement of Work of the ISPMS SB RAS, No. FRWR-2022-0005. The research was carried out using the equipment of the Nanotech Center for Collective Use (ISPMS SB RAS, Tomsk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Astafurova.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2021, Vol. 24, No. 3, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurova, E.G., Astafurov, S.V., Reunova, K.A. et al. Structure Formation in Vanadium-Alloyed Chromium-Manganese Steel with a High Concentration of Interstitial Atoms C + N = 1.9 wt % during Electron-Beam Additive Manufacturing. Phys Mesomech 25, 1–11 (2022). https://doi.org/10.1134/S1029959922010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922010015

Keywords:

Navigation