Skip to main content
Log in

Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys

  • Symposium: Beyond Nickel Base Superalloys II
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Trans. A, 1991, vol. 22A, pp. 1573-83.

    Article  Google Scholar 

  2. M.G. Mendiratta and D.M. Dimiduk: Metall. Trans. A, 1993, vol. 24A, pp. 501-04.

    Article  Google Scholar 

  3. D.M. Shah, D.L. Anton, D.P. Pope, and S. Chin: Mater. Sci. Eng. A, 1995, vols. A192/193, pp. 658-72.

    Article  Google Scholar 

  4. B.P. Bewlay, M.R. Jackson, and H.A. Lipsit: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801-08.

    Article  Google Scholar 

  5. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, vol. 49, pp. 44-45.

    Article  Google Scholar 

  6. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, and P.R. Subramanian: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2043-52.

    Article  Google Scholar 

  7. S. Miura, M. Aoki, Y. Saeki, K. Ohkubo, Y. Mishima, and T. Mohri: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 489-96.

    Article  Google Scholar 

  8. S. Miura, K. Ohkubo, and T. Mohri: Intermetallics, 2007, vol. 15, pp. 783-90.

    Article  Google Scholar 

  9. S. Miura, Y. Murasato, Y. Sekito, Y. Tsutsumi, K. Ohkubo, Y. Kimura, Y. Mishima, and T. Mohri: Mater. Sci. Eng. A, 2009, vols. A510-511, pp. 317-21.

    Article  Google Scholar 

  10. C.-L. Ma, Y. Tan, H. Tanaka, A. Kasama, R. Tanaka, S. Miura, Y. Mishima, and S. Hanada: Mater. Trans. JIM, 2000, vol. 41, pp. 1329-36.

    Google Scholar 

  11. W.-Y. Kim, H. Tanaka, A. Kasama, R. Tanaka, and S. Hanada: Intermetallics, 2001, vol. 9, pp. 521-27.

    Article  Google Scholar 

  12. Y. Li, S. Miura, K. Ohsasa, C.-L. Ma, and H. Zhang: Intermetallics, 2011, vol. 19, pp. 460-69.

    Article  Google Scholar 

  13. K.S. Chan: Mater. Sci. Eng. A, 2002, vols. A329-331, pp. 513-22.

    Article  Google Scholar 

  14. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1833-49.

    Article  Google Scholar 

  15. Y. Yang, Y. A. Chang, J.-C. Zhao, and B.P. Bewlay: Intermetallics, 2003, vol. 11, pp. 407-15.

    Article  Google Scholar 

  16. N. Sekido, Y. Kimura, S. Miura, and Y. Mishima: Mater. Trans., 2004, vol. 45, pp. 3264-71.

    Article  Google Scholar 

  17. J. Geng, G. Shao, and P. Tsakiropoulos: Intermetallics, 2006, vol. 14, pp. 832-37.

    Article  Google Scholar 

  18. N. David, Y. Cartigny, T. Belmonte, J.M. Fiorani, and M. Vilasi: Intermetallics, 2006, vol. 14, pp. 464-73.

    Article  Google Scholar 

  19. B.P. Bewlay, Y. Yang, R.L. Casey, M.R. Jackson, and Y.A. Chang: Intermetallics, 2009, vol. 17, pp. 120-27.

    Article  Google Scholar 

  20. T. Geng, C. Li, J. Bao, X. Zhao, Z. Du, and C. Guo: Intermetallics, 2009, vol. 17, pp. 343-57.

    Article  Google Scholar 

  21. T. Geng, C. Li, X. Zhao, H. Xu, Z. Du, and C. Guo: CALPHAD, 2010, vol. 34, pp. 363-76.

    Article  Google Scholar 

  22. I. Grammenos and P. Tsakiropoulos: Intermetallics, 2011, vol. 19, pp. 1612-21.

    Article  Google Scholar 

  23. Y. Chen, Q.-M. Hu, and R. Yang: Philos. Mag. Lett., 2011, vol. 91, pp. 640-47.

    Article  Google Scholar 

  24. V. Raghavan: Indian Inst. Met., 1987, vol. 1, pp. 55-59.

    Google Scholar 

  25. R.M. Waterstrat: J. Less-Common Met., 1975, vol. 43, pp. 105-15.

    Article  Google Scholar 

  26. PanNb, CompuTherm, LLC, Madison, WI.

  27. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, vols. 7–10, ASM International, Materials Park, OH, 1995.

  28. E.I. Gladyshevskii and Y.B. Kuz’ma: J. Struct. Chem., 1965, vol. 6, pp. 60-63.

    Article  Google Scholar 

  29. N. Vellios and P. Tsakiropoulos: Intermetallics, 2007, vol. 15, pp. 1529-37.

    Article  Google Scholar 

  30. E.I. Gladyshevskii, O.S. Koshel’, and R.V. Skolozdra: Inorg. Mater., 1969, vol. 5, pp. 1882-84.

    Google Scholar 

  31. J.L. Yu and K.F. Zhang: Scripta Mater., 2008, vol. 59, pp. 714-17.

    Article  Google Scholar 

  32. V.M. Pan, V.I. Latysheva, O.G. Kulik, and A.G. Popov: Russ. Metall., 1982, vol. 3, pp. 167-71.

    Google Scholar 

  33. Z. Sun, X. Guo, and C. Zhang: CALPHAD, 2012, vol. 36, pp. 82-88.

    Article  Google Scholar 

  34. S. Ochiai, Y. Oya, and T. Suzuki: Acta Metall., 1984, vol. 32, pp. 289-98.

    Article  Google Scholar 

  35. G.R. Johnson and D.H. Douglas: J. Low Temp. Phys., 1974, vol. 14, pp. 575-95.

    Article  Google Scholar 

  36. R.E. Somekh and J.E. Evetts: Solid State Commun., 1977, vol. 24, pp. 733-37.

    Article  Google Scholar 

  37. R.D. Feldman, R.L. Opila, T.H. Geballe, and S. Celaschi: Thin Solid Films, 1986, vol. 137, pp. 315-24.

    Article  Google Scholar 

  38. H. Kawamura and K. Tachikawa: Phys. Lett. A, 1975, vol. 55A, pp. 65-66.

    Article  Google Scholar 

  39. R.M. Waterstrat, F. Haenssler, and J. Muller: J. Appl. Phys., 1979, vol. 50, pp. 4763-66.

    Article  Google Scholar 

  40. Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, and H.Q. Ye: Intermetallics, 2008, vol. 16, pp. 807-12.

    Article  Google Scholar 

  41. Y. Li, C.-L. Ma, H. Zhang and S. Miura: Mater. Sci. Eng. A, 2011, vol. A528, pp. 5772-77.

    Article  Google Scholar 

  42. J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno, and S. Hanada: Mater. Sci. Eng. A, 2003, vol. A343, pp. 282-89.

    Article  Google Scholar 

  43. E.N. Sheftel and O.A. Bannykh: Int. J. Refract. Met. Hard Mater., 1993–1994, vol. 12, pp. 303–14.

Download references

Acknowledgments

This study is supported partly by The IWATANI NAOJI foundation. It is a pleasure for the authors to thank Mr. N. Miyazaki and Mr. H. Uesugi for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Miura.

Additional information

Manuscript submitted December 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, S., Hatabata, T., Okawa, T. et al. Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys. Metall Mater Trans A 45, 1136–1147 (2014). https://doi.org/10.1007/s11661-013-2118-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2118-8

Keywords

Navigation