Skip to main content
Log in

Evaluation of Texture and Grain Size of Nanograined Copper Produced by the Accumulative Roll Bonding Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Pure copper was intensely deformed by accumulative roll bonding (ARB) for up to eight cycles at ambient temperature. X-ray diffraction (XRD) was used to evaluate the grain size and texture during the ARB process. The Williamson–Hall method was used to calculate the grain size from the XRD patterns, which was about 30 nm after eight cycles of the ARB process. Texture analysis revealed cube texture in the initial copper. The intensity of cube texture decreased after one cycle of the ARB process. The texture of two-cycle ARB-processed sample was a transition texture, from cube to shear texture (rotated cube) that appeared after two cycles of ARB process in the subsurface regions. This shear texture developed due to shear deformation induced by the high level of friction between the rolls and the sheet. Moreover, shear texture was replaced by recrystallization texture (cube component) by annealing the ARB-processed samples. This result was caused by preferential growth of cube grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  CAS  Google Scholar 

  2. B. Cherukuri, T.S. Nedkova, and R. Srinivasan: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 394–97.

    Google Scholar 

  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  4. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino: Mater. Sci. Eng. A, 2003, vol. 340, pp. 265–71.

    Article  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.

    Article  CAS  Google Scholar 

  6. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–800.

    Article  CAS  Google Scholar 

  7. J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A.K. Basu: Mater. Res. Bull., 2008, vol. 43, pp. 1023–31.

    Article  CAS  Google Scholar 

  8. S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, and S. Soren: Scripta Mater., 2006, vol. 54, pp. 1691–96.

    Article  CAS  Google Scholar 

  9. C.P. Heason and P.B. Prangnell: Mater. Sci. Forum, 2002, vols. 408–412, pp. 733–38.

    Article  Google Scholar 

  10. S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar: Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57.

    Article  Google Scholar 

  11. M. Shaarbaf and M.R. Toroghinejad: Mater. Sci. Eng. A, 2008, vol. 473, pp. 28–33.

    Article  Google Scholar 

  12. G.K. Williamson and W.H. Hall: Acta Mater., 1953, vol. 1, pp. 22–40.

    Article  CAS  Google Scholar 

  13. P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, Pintu Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra: Acta Mater., 2004, vol. 52, pp. 5687–96.

    Article  CAS  Google Scholar 

  14. T. Ungar, G. Tichy, J. Gubicza, and R. Hellmig: Powder Diffr., 2005, vol. 20, pp. 366–75.

    Article  ADS  CAS  Google Scholar 

  15. T. Ungar, L. Balogh, Y.T. Zhu, Z. Horita, C. Xu, and T.G. Langdon: Mater. Sci. Eng. A, 2007, vol. 444, pp. 153–56.

    Article  Google Scholar 

  16. A.L.M. Costa, A.C.C. Reis, L. Kestens, and M.S. Andrade: Mater. Sci. Eng. A, 2005, vol. 406, pp. 279–85.

    Article  Google Scholar 

  17. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44.

    Article  CAS  Google Scholar 

  18. H.W. Kim, S.B. Kang, M. Tsuji, and Y. Minamino: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3151–63.

    Article  CAS  Google Scholar 

  19. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, United Kingdom, 2004.

    Google Scholar 

  20. N. Takata, K. Yamada, K.I. Ikeda, F. Yoshida, H. Nakashima, and N. Tsuji: Mater. Sci. Forum, 2006, vols. 503–504, pp. 919–24.

    Article  Google Scholar 

  21. K. Ikeda, N. Takata, F. Yoshida, H. Nakashima, and H. Abe: Mater. Sci. Forum, 2002, vols. 396–402, pp. 569–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Toroghinejad.

Additional information

Manuscript submitted February 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaarbaf, M., Toroghinejad, M.R. Evaluation of Texture and Grain Size of Nanograined Copper Produced by the Accumulative Roll Bonding Process. Metall Mater Trans A 40, 1693–1700 (2009). https://doi.org/10.1007/s11661-009-9851-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9851-z

Keywords

Navigation