Skip to main content

Advertisement

Log in

Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The strengthening mechanisms of Al-TiAl3 nanocomposite, fabricated using cold roll bonding, annealing, and accumulative roll bonding (ARB) on Al sheets sandwiching with pure Ti powder were investigated in the present study. With annealing at 590 ℃ for 2 h, TiAl3 intermetallic compound was formed. After subsequent ARB process up to 5 cycles, final composite consists of ultrafine Al grains of less than 500 nm with TiAl3 particles larger than 200 nm. The strength and hardness of the final composite are 2.5 and 3.5 times the initial values, with an ultimate tensile strength of 400 MPa, which is dominated by grain-boundary strengthening due to the ultrafine Al grains, and Orowan strengthening due to the small TiAl3 particles. For comparison, an alternative fabrication route of cold roll bonding–ARB–annealing was also studied. This study showed that annealing before ARB is a critical factor in producing an ultrafine grain structure containing TiAl3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.S. Rana, R. Purohit, S. Das, IJSER 3, 1 (2012)

    Google Scholar 

  2. T.W. Clyne, in Encyclopedia of Materials: Science and Technology, Composites: MMC, CMC, PMC, ed. by A. Mortensen, (Elsevier, New York, 2001), p. 1

  3. T. Massalski (ed.), binary alloy phase diagrams, (American society for metals, 1986)

  4. J. Heathcote, G. Odette, G. Lucas, R. Rowe, D. Skelly, Acta Mater. 44, 2489 (1996)

    Article  Google Scholar 

  5. D. Lesuer, C. Syn., Metallic laminates for engine applications. Paper presented at 8th CIMTEC World Ceramics Congress and Forum on New Materials, Florence, Italy, 1994

  6. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998)

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)

    Article  CAS  Google Scholar 

  8. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47, 893 (2002)

    Article  CAS  Google Scholar 

  9. J. Oh, S.G. Pyo, S. Lee, N.J. Kim, J. Mater. Sci. 38, 3647 (2003)

    Article  CAS  Google Scholar 

  10. J.G. Luo, V.L. Acoff, Mater. Sci. Eng. A 379, 164 (2004)

    Article  Google Scholar 

  11. G.P. Chaudhari, V.L. Acoff, Intermetallics 18, 472 (2010)

    Article  CAS  Google Scholar 

  12. Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, J. Alloys Compd. 747, 217 (2018)

    Article  CAS  Google Scholar 

  13. F.V. Loo, G. Rieck, Acta Metall. Mater. 21, 61 (1973)

    Article  Google Scholar 

  14. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  15. Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, T. Indian I. Metals 71, 2497 (2018)

    Article  CAS  Google Scholar 

  16. R. Jamaati, M. R. Toroghinejad, Mater. Des. 31, 4816 (2010)

  17. R.E. Smallman, K.H. Westmacott, Philos. Mag. 2, 669 (1957)

    Article  CAS  Google Scholar 

  18. D. Rahmatabadi, R. Hashemi, B. Mohammadi, T. Shojaee, Mater. Sci. Eng. A 708, 301 (2017)

    Article  CAS  Google Scholar 

  19. R. Guan, D. Tie, Acta Metall. Sin. -Engl. Lett. 30, 409 (2017)

    Article  CAS  Google Scholar 

  20. H.R. Lin, Y.Z. Tian, S.J. Sun, Acta Metall. Sin. -Engl. Lett. 34, 925 (2021)

    Article  CAS  Google Scholar 

  21. C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 558, 510 (2012)

    Article  CAS  Google Scholar 

  22. N. Jia, M.W. Zhu, Y.R. Zheng, T. He, X. Zhao, Acta Metall. Sin. -Engl. Lett. 28, 600 (2015)

    Article  CAS  Google Scholar 

  23. M. Alizadeh, M.H. Paydar, F.S. Jazi, Compos. Part B: Eng. 44, 339 (2013)

    Article  CAS  Google Scholar 

  24. R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, J.A. Szpunar, Mater. Des. 35, 37 (2012)

    Article  CAS  Google Scholar 

  25. A. Mostafapor, V. Mohammadinia, Acta Metall. Sin. -Engl. Lett. 29, 735 (2016)

    Article  CAS  Google Scholar 

  26. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Acta Mater. 54, 5241 (2006)

    Article  CAS  Google Scholar 

  27. M. Nakamura, K. Kimura, J. Mater. Sci. 26, 2208 (1991)

    Article  CAS  Google Scholar 

  28. D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University, Cambridge, 1996), p. 66

    Book  Google Scholar 

  29. E.O. Hall, The deformation and aging of mild steel. Proc. Phys. Soc. London B 64, 747 (1951)

    Article  Google Scholar 

  30. N.J. Petch, J. Iron Steel Inst. 25, 174 (1953)

    Google Scholar 

  31. C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53, 4019 (2005)

    Article  CAS  Google Scholar 

  32. B. Li, A. Godfrey, Q. Meng, Q. Liu, N. Hansen, Acta Mater. 52, 1069 (2004)

    Article  CAS  Google Scholar 

  33. J.W. Martin, Micromechanisms in Particle Hardened Alloys (Cambridge University, Cambridge, 1980), p. 60

    Google Scholar 

  34. R. Casati, M. Vedani, Metals 4, 65 (2014)

    Article  Google Scholar 

  35. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Yazdani.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, Z., Toroghinejad, M.R. & Edris, H. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms. Acta Metall. Sin. (Engl. Lett.) 35, 636–650 (2022). https://doi.org/10.1007/s40195-021-01302-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01302-5

Keywords

Navigation