Skip to main content
Log in

A New Oxide Morphology Map: Initial Oxidation Behavior of Ni-Base Single-Crystal Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Predictions for oxidation behavior of Ni-base superalloys become more difficult than before because of the complex alloy composition. In this study, we focus on the initial oxidation behavior of Ni-base superalloys, and we suggest a new diagram to predict the initial oxide morphology of Ni-base superalloys with 63 binary, ternary, and multicomponent Ni-base single-crystal superalloys at 1373 K (1100 °C). As a comparison of observed and calculated weight changes after one cycle at 1373 K (1100 °C) obtained by a regression analysis, 63 alloys demonstrated two distinct behaviors, which are divided heretofore into group A and group B. Microstructural observation revealed that an oxide layer in the group A alloys consists of Al2O3 and/or spinel or complex oxide, whereas an oxide layer in the group B alloys consists of a thick NiO layer with an Al2O3 internal subscale. Thermodynamic properties can reflect more effects of alloy elements in Ni-base superalloys, and Al and Cr activities, calculated by Thermo-Calc, were used as factors to predict initial oxidation morphology. Groups A and B alloys can clearly be divided according to Al and Cr activities. This was suggested as a new diagram to predict the initial oxide morphology of Ni-base superalloys, and possibly it can apply for any generation of Ni-base superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Kawagishi, H. Harada, A. Sato, A. Sato, and T. Kobayashi: JOM, 2006, pp. 43–46.

  2. K. Kawagishi, A. Sato, H. Harada, A.C. Yeh, Y. Koizumi, and T. Kobayashi: Mater. Sci. Technol., 2009, vol. 25, no. 2, pp. 271-75.

    Article  CAS  Google Scholar 

  3. C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, no. 11, pp. 1782-90.

    Article  CAS  Google Scholar 

  4. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II, 2nd ed., Wiley, New York, NY, 1987, pp. 293-326.

    Google Scholar 

  5. G.R. Wallwork and A.Z. Hed: Oxi. Met., 1971, vol. 3, no. 2, pp. 171-84.

    Article  CAS  Google Scholar 

  6. C.A. Barrett and C.E. Lowell: Oxi. Met., 1977, vol. 11, no. 4, pp. 199-223.

    Article  CAS  Google Scholar 

  7. H. Hindam and D.P. Whittle: Oxi. Met., 1982, vol. 18, nos. 5-6, pp. 245-84.

    Article  CAS  Google Scholar 

  8. J.L. Smialek, J.A. Nesbitt, C.A. Barrett, and C.E. Lowell: NASA Report, No. 209768, NASA, Washington, DC, 2000.

  9. B.A. Pint, P.F. Tortorelli, and I.G. Wright: Oxi. Met., 2002, vol. 58, nos. 1, 2, pp. 73-101.

    Article  CAS  Google Scholar 

  10. C. Wagner: J. Electrochem. Soc., 1952, vol. 99, pp. 369-80.

    Article  CAS  Google Scholar 

  11. T.J. Nijdam and W.G. Sloof: Acta Mater., 2008, vol. 56, pp. 4972-83.

    Article  CAS  Google Scholar 

  12. T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof: Acta Mater., 2003, vol. 51, pp. 5295-5307.

    Article  CAS  Google Scholar 

  13. T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof: Acta Mater., 2005, vol. 53, pp. 1643-53.

    Article  CAS  Google Scholar 

  14. G. Wahl: Thin Solid Films, 1983, vol. 107, pp. 417-26.

    Article  CAS  Google Scholar 

  15. A. Sato, Y.-L. Chiu, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 225-40.

    Article  CAS  Google Scholar 

  16. H. Harada, K. Ohno, T. Yamagata, T. Yokokawa, and M. Yamazaki: Superalloys 1988, TMS, Champion, PA, 1988, pp. 733-42.

    Google Scholar 

  17. S. Walston, A. Cetal, R. Mackay, K. O’Hara, D. Duhl, and R. Dreshfield: Superalloys 2004, TMS, Champion, PA, 2004, pp. 15-24.

    Google Scholar 

  18. M. Osawa and H. Harada: Proc. of High Temperature Materials 2001, NIMS, Tsukuba, Japan, 2001, pp. 14–15.

  19. T. Yokokawa, M. Osawa, K. Tanaka, T. Kobayashi, and H. Harada: Proc. of 2000 JIM Spring meeting, Yokohama, Japan, 2000, p. 295.

  20. A. Sato, H. Harada, A.C. Yeh, K. Kawagishi, Y. Koizumi, T. Yokokawa, and J.X. Zhang: Superalloys 2008, TMS, Champion, PA, 2008, pp. 131-38.

    Google Scholar 

  21. Thermo-Calc Software: Thermo-Calc, http://www.thermocalc.se/.

  22. A.S. Suzuki, K. Kawagishi, T. Yokokawa, H. Harada, and T. Kobayashi: Scripta Mater., 2011, vol. 65, pp. 49-52.

    Article  CAS  Google Scholar 

  23. K. Pruessner and H. Harada: J. Electrochem. Soc., 2010, vol. 57, no. 11, pp. 95-98.

    Article  Google Scholar 

  24. A. Akhtar, M.S. Hook, and R.C. Reed: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3001-17.

    Article  CAS  Google Scholar 

  25. K. Kawagishi, A. Sato, A. Sato, T. Kobayashi, and H. Harada: Mater. Sci. Forum., 2006, vols. 522–523, pp. 317-22.

    Article  Google Scholar 

  26. K. Kawagishi, A. Sato, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2007, vol. 71, no. 3, pp. 313-19.

    Article  CAS  Google Scholar 

  27. R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga: Superalloys 2004, TMS, Champion, PA, 2004, pp. 53-62.

    Google Scholar 

  28. T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, and H. Harada: Scripta Mater., 2003, vol. 49, pp. 1041-46.

    Article  CAS  Google Scholar 

  29. F.H. Stott, G.C. Wood, D.P. Whittle, B.D. Bastow, Y. Shida, and A. Martinez-Villafane: Solid State Ion., 1984, vol. 12, pp. 365-74.

    Article  CAS  Google Scholar 

  30. F.H. Stott, Y. Shida, D.P. Whittle, G.C. Wood, and B.D. Bastow: Oxi. Met., 1982, vol. 18, pp. 127-46.

    Article  CAS  Google Scholar 

  31. F.H. Stott, G.C. Wood, Y. Shida, D.P. Whittle, and B.D. Bastow: Corrosion Sci., 1981, vol. 21, pp. 599-624.

    Article  CAS  Google Scholar 

  32. N. Birks and G.H. Meier: Introduction to High Temperature Oxidation of Metals, 1st ed., Edward Arnold, London, UK, 1983, pp. 91-130.

    Google Scholar 

  33. L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184-201.

    Google Scholar 

  34. G.S. Hartley and J. Crank: Trans. Faraday Soc., 1949, vol. 45, no. 9, pp. 801-18.

    Article  CAS  Google Scholar 

  35. I.M. Edmonds, H.E. Evans, C.N. Jones, and B.W. Broomfield: Oxi. Met., 2008, vol. 69, nos. 1-2, pp. 95-108.

    Article  CAS  Google Scholar 

  36. K. Kawagishi, A. Sato, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2006, vol. 70, no. 8, pp. 686-89.

    Article  CAS  Google Scholar 

  37. I.M. Edmonds, H.E. Evance, C.N. Jones, and R.W. Broomfield: Mater. Sci. Forum., 2008, vols. 595-8, pp. 59-67.

    Article  Google Scholar 

  38. R.A. Hobbs, L. Zhang, C.M.F. Rae, and S. Tin: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1014-25.

    Article  CAS  Google Scholar 

  39. A.C. Yeh, C.M.F. Rae, and S. Tin: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 677-86.

    Google Scholar 

  40. S. Bose: High Temperature Coatings, Butterworth-Heinemann, Burlington, MA, 2007, pp. 29-52.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyko Kawagishi.

Additional information

Manuscript submitted February 23, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A.S., Kawagishi, K., Yokokawa, T. et al. A New Oxide Morphology Map: Initial Oxidation Behavior of Ni-Base Single-Crystal Superalloys. Metall Mater Trans A 43, 155–162 (2012). https://doi.org/10.1007/s11661-011-0838-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0838-1

Keywords

Navigation