Skip to main content
Log in

Mechanisms of Topologically Close-Packed Phase Suppression in an Experimental Ruthenium-Bearing Single-Crystal Nickel-Base Superalloy at 1100 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ruthenium (Ru) suppresses the precipitation of deleterious topologically close-packed (TCP) phases in high refractory content single-crystal Ni-base superalloys. The effectiveness of Ru as a TCP suppressant appears to be the net effect of its limited solubility in the TCP phase, a lower density of structural growth ledges for atomic attachment at the TCP/matrix interface, and destabilization of the γ′ phase at elevated temperatures. These characteristics combine to limit the growth rates of precipitates and decrease the driving force for TCP precipitation, which has the secondary effect of reducing the TCP nucleation rate. The reduction in γ′ volume fraction upon the addition of Ru is particularly potent due to the sensitivity of the rhenium (Re) content in the γ matrix to changes in the γ′ volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp. Mahwah, NJ.

  3. PHILIPS is a trademark of Philips Electronic Instruments Corp. Mahwah, NJ.

References

  1. G.L. Erickson: Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 35–44

    Google Scholar 

  2. W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 27–34

    Google Scholar 

  3. A.F. Giamei and D.L. Anton: Metall. Trans. A, 1985, vol. 16A, pp. 1997–2004

    CAS  Google Scholar 

  4. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 263–72

    Google Scholar 

  5. C.M. Neubauer, D. Mari, and D.C. Dunand: Scripta Metall. Mater., 1994, vol. 31(1), pp. 99–104

    Article  CAS  Google Scholar 

  6. H. Murakami, T. Honma, Y. Koizumi, and H. Harada: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 747–56

    Google Scholar 

  7. S. Tin and T.M. Pollock: Mater. Sci. Eng. A, 2003, vol. 348, pp. 111–21

    Article  Google Scholar 

  8. D.N. Duhl: Superalloys II, Wiley-Interscience, New York, NY, 1987, pp. 189–214

    Google Scholar 

  9. C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield, C.N. Jones, and R.C. Reed: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 767–76

    Google Scholar 

  10. K.S. O’Hara, W.S. Walston, E.W. Ross, and R. Darolia: U.S. Patent 5,482,789, 1996

  11. P. Caron: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 747–56

    Google Scholar 

  12. S. Walston, A. Cetel, R. MacKay, K. O’Hara, D. Duhl, and R. Dreshfield: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 15–24

    Google Scholar 

  13. Y. Koizumi, T. Kobayashi, T. Yokokawa, Z. Jianxin, M. Osawa, H. Harada, Y. Aoki, and M. Arai: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 35–44

    Google Scholar 

  14. A.C. Yeh, C.M.F. Rae, and S. Tin: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 677–86

    Google Scholar 

  15. A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi, and H. Imai: Scripta Mater., 2006, vol. 54(9), pp. 1679–84

    Article  CAS  Google Scholar 

  16. T. Yokokawa, M. Osawa, H. Murakami, T. Kobayashi, Y. Koizumi, T. Yamagata, and H. Harada: Scripta Mater., 2003, vol. 49, pp. 1041–46

    Article  CAS  Google Scholar 

  17. R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, and M.K. Miller: Scripta Mater., 2004, vol. 51, pp. 327–31

    Article  CAS  Google Scholar 

  18. P. Stadelmann: Centre Interdepartmental de Microscopie Elecronique, EPFL, Lausanne, Switzerland

  19. Imaging Associates Ltd., Bicester, United Kingdom

  20. C.M.F. Rae, and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–25

    Article  CAS  Google Scholar 

  21. D.A. Porter, and K.E. Easterling: Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.

    Google Scholar 

  22. R.A. Hobbs: Ph.D. Thesis, The University of Cambridge, Cambridge, United Kingdom, 2006

  23. A. Volek, F. Pyczak, R.F. Singer, and H. Mughrabi: Scripta Mater., 2005, vol. 52(2), pp. 141–45

    Article  CAS  Google Scholar 

  24. K.E. Yoon, D. Isheim, R.D. Noebe, and D.N. Seidman: Interface Sci., 2001, vol. 9, pp. 249–55

    Article  CAS  Google Scholar 

  25. H.I. Aaronson: Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, p. 387

    Google Scholar 

  26. M. Ferrante and R.D. Doherty: Acta Metall., 1979, vol. 27, pp. 1603–14

    Article  CAS  Google Scholar 

  27. J.M. Howe, H.I. Aaronson, and R. Gronsky: Acta Metall., 1985, vol. 33(4), pp. 639–48

    Article  CAS  Google Scholar 

  28. J.M. Howe: Phil. Mag. A, 1987, vol. 56, pp. 31–61

    Article  CAS  Google Scholar 

  29. K.E. Rajab and R.D. Doherty: Acta Metall., 1989, vol. 37(10), pp. 2709–22

    Article  CAS  Google Scholar 

  30. W.A. Cassada, G.J. Shiflet, and E.A. Starke: Metall. Trans. A, 1991, vol. 22, pp. 287–97

    Article  Google Scholar 

  31. G. Spanos, R.A. Masumura, R.A. Vandermeer, and M. Enomoto: Acta Metall. Mater., 1994, vol. 42(12), pp. 4165–76

    Article  CAS  Google Scholar 

  32. C.S. Barrett: Structure of Metals: Crystallographic Methods, Principles and Data, McGraw-Hill, New York, NY, 1966

    Google Scholar 

  33. C.R. Hutchinson, X. Fan, S.J. Pennycook, and G.J. Shiflet: Acta Mater., 2001, vol. 49, pp. 2827–41

    Article  CAS  Google Scholar 

  34. R.A. Hobbs, M.S.A Karunaratne, S. Tin, R.C. Reed, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 587–94

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Rolls-Royce plc., the Engineering and Physical Sciences Research Council (EPSRC), the Cambridge Commonwealth Trust, and the Worshipful Company of Engineers for the provision of material and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Hobbs.

Additional information

Manuscript submitted July 30, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbs, R., Zhang, L., Rae, C. et al. Mechanisms of Topologically Close-Packed Phase Suppression in an Experimental Ruthenium-Bearing Single-Crystal Nickel-Base Superalloy at 1100 °C. Metall Mater Trans A 39, 1014–1025 (2008). https://doi.org/10.1007/s11661-008-9490-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9490-9

Keywords

Navigation