Skip to main content
Log in

Computer-aided design of transformation toughened blast resistant naval hull steels: Part I

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

A systematic approach to computer-aided materials design has formulated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A theoretical design concept integrated the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ∼3 nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1,100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability, without causing excessive solidification microsegregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olson G.B. (1997) Computational Design of Hierarchically Structured Materials. Science 277: 1237–1242

    Article  CAS  Google Scholar 

  2. Olson G.B. (2000) Pathways of Discovery: Designing a New Material World. Science 288: 993–998

    Article  CAS  Google Scholar 

  3. Gagliano M.S., Fine M.E. (2001) Precipitation Kinetics of Niobium Carbide and Copper in a Low Carbon, Chromium-Free Steel. CALPHAD 25, 207–216

    Article  CAS  Google Scholar 

  4. Haidemenopoulos G.N., Olson G.B., Cohen M. (1990) Dispersed-Phase Transformation Toughening in Ultrahigh-Strength Steels. In: Olson G.B., Azrin M., Wright E.S. (eds) Innovations in Ultrahigh-Strength Steel Technology (34th Sagamore Army Materials Research Conference). US Government Printing Office, Washington DC, Lake George, NY, pp. 549–593

    Google Scholar 

  5. Socrate S.: Mechanics of Microvoid Nucleation and Growth in High-Strength Metastable Austenitic Steels Doctoral Dissertation, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (1995)

  6. Olson G.B., Kuehmann C.J.: Transformation Toughening in Dispersed Phase Systems In: Austenite Formation and Decomposition Symposium in Mat Sci & Tech 2003 Proc (ISS & TMS), pp. 493–504. Chicago, IL (2003)

  7. Ashby M.F.: Materials Selection in Conceptual Design In: Proc. Ashby Symp. On Materials Design, ASM World Materials Congress, Chicago, IL (1988)

  8. Smith C.S. (1981) A Search for Structure. MIT Press, Cambridge, MA

    Google Scholar 

  9. Jenkins G.M. (1972) The Systems Approach. In: Beishon J., Peters G. (eds) Systems Behavior. Open University Press, Birmingham, UK, pp. 56–79

    Google Scholar 

  10. Stavehaug F. (1990) Transformation Toughening of γ’-Strengthened Metastable Austenitic Steels Doctoral Dissertation, Department of Materials Science and Engineering. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  11. Leal R.H. (1984) Transformation Toughening of Metastable Austenitic Steels Doctoral Dissertation, Department of Materials Science and Engineering. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  12. Hsieh K.C. (2000) Fracture Toughness of Ti-modified Air-melted UHS Steels Doctoral Dissertation Proposal, Department of Materials Science and Engineering. Northwestern University, Evanston, IL

    Google Scholar 

  13. Garrison W.M., Handerhan K.J. Fracture Toughness: Particle-Dispersion Correlations In: Olson G.B., Azrin M., Wright, E.S. (eds.) Innovations in Ultrahigh-Strength Steel Technology (34th Sagamore Army Materials Research Conference), pp. 443–466. US Government Printing Office, Washington DC, Lake George, NY (1990)

  14. Barsom J.M., Rolfe S.T. (1987) Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics. Prentice-Hall Inc., Englewood Cliffs, NJ, pp. 159–188

    Google Scholar 

  15. Ritchie R.O., Francis B., Server W.L. (1976) Evaluation of toughness in ALSL 4340 alloy steel austenitized at low and high temperatures Metall. Trans. A 7A: 831–838

    CAS  Google Scholar 

  16. Ghosh G., Campbell C.E., Olson G.B. (1999) An Analytical Electron Microscopy Study of Paraequilibrium Cementite Precipitation in Ultra-high Strength Steel Metall. Mater. Trans. A 30A: 501–512

    CAS  Google Scholar 

  17. Wise J. (1998). Systems Design of Advanced Gear Steels Doctoral Dissertation, Department of Materials Science and Engineering. Northwestern University, Evanston IL

    Google Scholar 

  18. Geng,W.T., Freeman A.J., Olson G.B. (2000) Influence of Alloying Additions on Grain Boundary Cohesion of Transition Metals: First-principles Determination and its Phenomological Extension. Phys. Rev. B 63: 165415

    Article  Google Scholar 

  19. Kantner C.D. (2002) Designing Strength, Toughness and Hydrogen Resistance: Quantum Steel Doctoral Dissertation, Department of Materials Science and Engineering. North-western University, Evanston, IL

    Google Scholar 

  20. Russell K.C., Brown L.M. (1972) A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Iron-Copper. System Acta Metall. 20, 969–974

    Article  CAS  Google Scholar 

  21. Foley R.P., Fine M.E. (1991) Microstructure and Property Investigation of Quenched and Tempered HSLA-100 Steel. In: DeArdo A.J. (eds) ISS, Proceedings of the International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels. Warrendale, PA, pp. 315–329

    Google Scholar 

  22. Kuehmann C.J. (1994) Thermal Processing Optimization of Nickel-Cobalt Ultrahigh-Strength Steels Doctoral Dissertation, Department of Materials Science and Engineering. Northwestern University, Evanston IL

    Google Scholar 

  23. Spaulding D. (1995) Grain Boundary Cohesion and Segregation in Ultrahigh Strength Alloy Steels Doctoral Dissertation, Department of Materials Science and Engineering. North-western University, Evanston, IL

    Google Scholar 

  24. Ashby M.F., Jones D.R.H. (1980) Engineering Materials: An Introduction to their Properties and Application. Pergamon Press, New York

    Google Scholar 

  25. Somers B.R. Introduction to the Selection of Carbon and Low-Alloy Steels In: ASM Handbook: Welding, Brazing, and Soldering, 6th edn., pp. 405–407. ASM International, Metals Park, Ohio (1993)

  26. Gagliano M.S. (2002) Co-precipitation of Copper and Niobium Carbide in a Low Carbon Steel Doctoral Dissertation, Department of Materials Science and Engineering. North-western University, Evanston, IL

    Google Scholar 

  27. Sundman B., Jansson B., Andersson J. (1985) The Thermo-Calc databank system. CALPHAD 9, 153–190

    Article  CAS  Google Scholar 

  28. Goodman S.R., Brenner S.S., Low J.R. (1973) An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper. Part I: Field-Ion Microscopy. Metall. Trans. A 4: 2363–2369

    CAS  Google Scholar 

  29. Goodman S.R., Brenner S.S., Low J.R. (1973) An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper. Part II: Atom Probe Analyses Metall. Trans. A 4: 2371–2378

    CAS  Google Scholar 

  30. Phythian W.J., Foreman A.J.E., English C.A., Buswell J.T., Hetherington M., Roberts K., Pizzini S.: The Structure and Hardening Mechanism of Copper Precipitation in Thermally Aged or Irradiated Fe-Cu and Fe-Cu-Ni Model Alloys In: Stoller R.E., Kumar A.S., Gelles D.S. (eds.) Effects of Radiation on Materials: 15th International Symposium, pp. 131–150. ASTM STP 1125, Philadelphia, PA (1992)

  31. Deschamps A., Militzer M., Poole W.J. (2001) Precipitation Kinetics and Strengthening of a Fe-0.8. wt% Cu alloy ISIJ Int. 41, 196–205

    CAS  Google Scholar 

  32. Worrall G.M., Buswell J.T., English C.A., Hetherington M.G., Smith G.D.W. (1987) A Study of the Precipitation of Copper Particles in a Ferrite Matrix J. Nucl. Mater. 148, 107–114

    Article  CAS  Google Scholar 

  33. Hornbogen E. In: Speich G.R., Clark J.B. (eds.) Precipitation from Iron-Base Alloys. Gordon and Breach, New York, NY (1965)

  34. Pizzini S., Roberts K.J., Phythian W.J., English C.A., Greaves G.N. (1990) A Fluorescence EXAFS Study of the Structure of Copper-rich precipitates in Fe-Cu and Fe-Cu-Ni Alloys Phil. Mag. Lett. 61, 223–229

    CAS  Google Scholar 

  35. Phythian W.J., Dumbill S., Brown P., Sinclair R.: Stability of Thermally Induced Copper Precipitates Under Neutron Irradiation In: Proceedings of the 6th International Symposium on Environmental Degradation in Nuclear Power Systems –Water reactors, pp. 729-737. TMS (1993)

  36. Gore M.J., Olson G.B., Cohen M.: Grain-Refining Dispersions and Properties in Ultrahigh Strength Steels In: Olson G.B., Azrin, M., Wright E.S. (eds.) Innovations in Ultrahigh-Strength Steel Technology (34th Sagamore Army Materials Research Conference), pp. 425–441. US Government Printing Office, Washington DC, Lake George, NY (1990)

  37. Olson G.B., Tsuzaki K., Cohen M. (1987) Statistical Aspects of Martensitic nucleation. In: Cargill G.S., Spaepen F., Tu K.N. (eds) David Turnbull Symposium on Phase Transitions in Condensed Systems, vol 57. MRS, Pittsburgh, PA, pp. 127–148

    Google Scholar 

  38. Ghosh G., Olson G.B. (1994) Kinetics of FCCBCC Heterogeneous Martensitic Nucleation – I. The Critical Driving Force for Athermal Nucleation Acta Mater. 42: 3361–3370

    CAS  Google Scholar 

  39. Ghosh G., Olson G.B. (1994) Kinetics of FCCBCC Heterogeneous Martensitic Nucleation – II. Thermal Activation Acta Mater. 42: 3371–3379

    CAS  Google Scholar 

  40. Lippard H.E. (1999) Microanalytical Investigations of Transformation Toughened Co–Ni Steels Doctoral Dissertation, Department of Materials Science and Engineering. North-western University, Evanston, IL

    Google Scholar 

  41. Campbell C.E., Olson G.B. (2000) Systems design of high performance stainless steels I. Conceptual and computational design J. Comput. Aided Mat. Design 7, 145–170

    Article  CAS  Google Scholar 

  42. Scheil E. (1942) "Bemerkungen zur Schichtkristallbildung Z. Metallkd. 34, 70–72

    Google Scholar 

  43. Lippard H.E., Campbell C.E., Bjorklind T., Borggren U., Kellgren P., Dravid V.P., Olson G.B. (1998) Microsegregation behavior during solidification and homogenization of AerMet100 steel Metall. Mater. Trans. B 29, 205–210

    Google Scholar 

  44. Hono K., Ping D.H., Ohnuma M., Onodera O. (1999) Cu Clustering and Si Partitioning in the Early Crystallization Stage of an Fe73.5Si13.5B9Nb3Cu1 Amorphous Alloy Acta Mater. 47: 997–1006

    Article  CAS  Google Scholar 

  45. Ohkubo T., Kai H., Ping D.H., Hono K., Hirotsu Y. (2001) Mechanism of Heterogeneous Nucleation of α-Fe Nanocrystals from Fe89Zr7B3Cu1. Amorphous Alloy Scripta Mater. 44, 971–976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, A., Olson, G.B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I. J Computer-Aided Mater Des 14, 177–200 (2007). https://doi.org/10.1007/s10820-006-9031-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9031-z

Keywords

Navigation