Skip to main content
Log in

Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

Application of a systems approach to computational materials design led to the theoretical design of a transformation toughened ultratough high-strength plate steel for blast-resistant naval hull applications. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (C v  >  85 ft-lbs or 115 J corresponding to K Id≥ 200 ksi.in1/2 or 220 MPa.m1/2) at strength levels of 150–180 ksi (1,030–1,240 MPa) yield strength in weldable, formable plate steels. A continuous casting process was simulated by slab casting the prototype alloy as a 1.75′′ (4.45 cm) plate. Consistent with predictions, compositional banding in the plate was limited to an amplitude of 6–7.5 wt% Ni and 3.5–5 wt% Cu. Examination of the oxide scale showed no evidence of hot shortness in the alloy during hot working. Isothermal transformation kinetics measurements demonstrated achievement of 50% bainite in 4 min at 360 °C. Hardness and tensile tests confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1,100 MPa). Comparison with the baseline toughness–strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 65% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microanalysis. Charpy impact tests and fractography demonstrate ductile fracture with C v  >  80 ft-lbs (108 J) down to −40 °C, with a substantial toughness peak at 25 °C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels. Achieving these improvements in a single design and prototyping iteration is a significant advance in computational materials design capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha, A., Olson, G.B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I. J. Comput.- Aided Mat. Design (2005) (Submitted)

  2. Kuehmann C.J., Olson G.B. (1998) Gear steels designed by computer. Adv. Mater. Proc. 153, 40–43

    CAS  Google Scholar 

  3. Lippard H.E. (1999) Microanalytical investigations of transformation toughened Co-Ni steels. Doctoral dissertation. Northwestern University, Evanston, IL

    Google Scholar 

  4. Haidemenopoulos, G.N., Olson, G.B., Cohen, M. Dispersed-Phase Transformation Toughening in Ultrahigh-Strength Steels. In: Olson, G.B., Azrin, M., Wright, E.S. (eds.) Innovations in Ultrahigh-Strength Steel Technology (34th Sagamore Army Materials Research Conference), pp. 549–593. US Government Printing Office, Washington DC Lake George NY (1990)

  5. Sebastian J.T. (2001) Nanoscale three-dimensional studies of segregation at ceramic/metal interfaces. Doctoral dissertation. Northwestern University, Evanston IL

    Google Scholar 

  6. Miller M.K., Smith G.D.W. (1977) Atom Probe Microanalysis: Principles and Applications to Materials Problems. MRS Publications, Pittsburgh, PA

    Google Scholar 

  7. Hellman O.C., Vandenbroucke J.A., Blatz du Rivage J., Seidman D.N. (2002) Application software for data analysis for three-dimensional atom probe microscopy. Mater. Sci. Eng. A 327, 29–33

    Article  Google Scholar 

  8. Hellman O.C., Blatz du Rivage J., Seidman D.N. (2003) Efficient sampling for three-dimensional atom-probe microscopy data. Ultramicroscopy 95, 199–205

    Article  CAS  Google Scholar 

  9. Hellman O.C., Vandenbroucke J.A., Rüsing J., Isheim D., Seidman D.N. (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444

    Google Scholar 

  10. Halley, J.W. Effect of residual elements upon the properties of metals. ASM 71–87 (1957)

  11. Melford D.A. (1962) Surface hot shortness in mild steel. J. Iron Steel Inst. 200, 290–299

    CAS  Google Scholar 

  12. Seo S., Asakura K., Shibata K. (1997) Effects of 0.4% Si and 0.02% P additions on surface hot shortness in 0.1%C-0.5%Mn steels containing 0.5% Cu. ISIJ Int., 37, 240–249

    CAS  Google Scholar 

  13. Salter W.J.M. (1966) Effects of alloying elements on solubility and surface energy of copper in mild steel. J. Iron Steel Inst. 204, 478–488

    Google Scholar 

  14. Fisher G.L. (1969) The effect of nickel on the high-temperature oxidation characteristics of copper-bearing steels. J. Iron Steel Inst., 207, 1010–1016

    CAS  Google Scholar 

  15. Imai N., Komatsubara N., Kunishige K. (1997) Effect of Cu and Ni on hot workability of hot-rolled mild steel. ISIJ Int. 37, 224–231

    CAS  Google Scholar 

  16. Akamatsu S., Senuma T., Takada Y., Hasebe M. (1999) Effect of nickel and tin additions on formation of liquid phase in copper bearing steels during high temperature oxidation. Mater. Sci. Tech. 15, 1301–1307

    CAS  Google Scholar 

  17. Nicholson A., Murray J.D. (1965) Surface hot shortness in low-carbon steel. J. Iron Steel Inst. 203, 1007–1018

    CAS  Google Scholar 

  18. Ghosh G., Olson G.B. (1994) Kinetics of \({{{\rm FCC}} \to {{\rm BCC}}}\) heterogeneous martensitic nucleation-I. the critical driving force for athermal nucleation. Acta Mater. 42, 3361–3370

    Article  CAS  Google Scholar 

  19. Maruyama N., Sugiyama M., Hara T., Tamehiro H. (1999) Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels. Mater. Trans. JIM 40, 268–277

    CAS  Google Scholar 

  20. Foley R.P. (1992) Normal and intercritical tempering behavior of a low-carbon, copper-bearing steel designed for ultraservice applications. Doctoral dissertation. Northwestern University, Evanston IL

    Google Scholar 

  21. Grange R.A., Baughman R.W. (1956) Hardness of tempered martensite in carbon and low alloy steels. Trans. Am. Soc. Met. 48, 165–197

    Google Scholar 

  22. Hollomon J.H. (1945) Tensile deformation. Trans. Metall. Soc. AIME. 162, 268–290

    Google Scholar 

  23. Leal R.H. (1984). Transformation toughening of metastable austenitic steels. Doctoral dissertation. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA

    Google Scholar 

  24. Gagliano, M.S. Co-precipitation of copper and niobium carbide in a low carbon steel. Doctoral dissertation. Northwestern University, Evanston IL (2002). Atom-probe experiments by D. Isheim

  25. Russell K.C., Brown L.M. (1972) A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system. Acta Metall. 20, 969–974

    Article  CAS  Google Scholar 

  26. Isheim D. (2002) Unpublished research. Department of Materials Science and Engineering, Northwestern University, Evanston IL

    Google Scholar 

  27. Miller M.K. (1999) Atom Probe Tomography: Analysis at the Atomic Level. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  28. Goodman S.R., Brenner S.S., Low J.R. (1973) An FIM-Atom probe study of the precipitation of copper from iron-1.4 At. Pct copper. Part II: Atom probe analyses. Metall. Trans. A 4, 2371–2378

    CAS  Google Scholar 

  29. Vurpillot F., Bostel A., Blavette D. (2000) Trajectory overlaps and local magnification in three-dimensional atom probe. App. Phy. Lett. 76, 3127–3129

    Article  CAS  Google Scholar 

  30. Blavette D., Vurpillot F., Pareige P., Menand A. (2001) A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145–153

    Article  CAS  Google Scholar 

  31. Miller, M.K., Cerezo, A., Hetherington, M.G., Smith, G.D.W. In Miller, M.K. (ed.) Atom Probe Field Ion Microscopy. Clarendon, Oxford UK, pp. 196–199 (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, A., Jung, J. & Olson, G.B. Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II. J Computer-Aided Mater Des 14, 201–233 (2007). https://doi.org/10.1007/s10820-006-9032-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9032-y

Keywords

Navigation