Skip to main content
Log in

Deformation Mechanism in the Crack-Tip Region of Fine-Grained Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation mechanism in the crack-tip region of a fine-grained Mg-2.4 at. pct Zn binary alloy was investigated by focused ion beam (FIB) and transmission electron microscopy (TEM) observation and finite element analysis (FEA) at the beginning of the fracture toughness test. The deformed microstructure observations showed the formation of subgrains instead of deformation twins in the fracture toughness tested sample, which was performed at a conventional crosshead speed of 1 mm/min. By preventing the formation of deformation twins at the beginning of the test, the crack tip of the fine-grained magnesium alloys became blunted, and thus, the alloys obtained high fracture toughness. Finite element results showed that the temperature increased 50 to 110 K, and the strain rate became two orders of magnitude higher; however, this temperature increment was not sufficient to form high-angle grain boundaries, i.e., a complete occurrence of dynamic recrystallization. On the other hand, the deformed microstructure observations in the sample, which was tested at a crosshead speed of 50 mm/min, showed the formation of nano-order {10-12} deformation twins and subgrains. The formation of deformation twins was caused, in part, by the severe strain from the operation of a high strain rate in the crack-tip region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. H. Somekawa, A. Singh, and T. Mukai: Scripta Mater., 2007, vol. 56, pp. 1091–94.

    Article  CAS  Google Scholar 

  2. H. Yoshinaga and R. Horiuchi: Mater. Trans. JIM, 1963, vol. 4, pp. 1–8.

    CAS  Google Scholar 

  3. J. Koike: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1689–96.

    Article  CAS  Google Scholar 

  4. H. Somekawa, A. Singh, and T. Mukai: Philo. Mag. Lett., 2009, vol. 89, pp. 2–10.

    Article  CAS  Google Scholar 

  5. M.A. Meyers, O. Vohringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  CAS  Google Scholar 

  6. D. Lahaie, J.D. Embury, M.M. Chadwick, and G.T. Gray: Scripta Metall., 1992, vol. 27, pp. 139–42.

    Article  CAS  Google Scholar 

  7. H. Somekawa, T. Inoue, and T. Mukai: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1761–68.

    Article  Google Scholar 

  8. A. Jain, O. Duygulu, D.W. Brown, C.N. Tome, and S.R. Agnew: Mater. Sci. Eng. A, 2008, vol. 486, pp. 545–55.

    Article  Google Scholar 

  9. Y. Chino, K. Kimura, and M. Mabuchi: Mater. Sci. Eng. A, 2008, vol. 486, pp. 481–88.

    Article  Google Scholar 

  10. M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–99.

    Article  CAS  Google Scholar 

  11. N. Nagata, S. Yoshida, and Y. Sekino: J. Jpn. Inst. Met., 1969, vol. 33, pp. 271–75.

    CAS  Google Scholar 

  12. D. Hull: Acta Mater., 1961, vol. 9, pp. 191–204.

    Article  CAS  Google Scholar 

  13. H. Somekawa and T. Mukai: Scripta Mater., 2005, vol. 53, pp. 1059–64.

    Article  CAS  Google Scholar 

  14. H. Somekwa, Y. Osawa, A. Singth, and T. Mukai: J. Mater. Res., 2008, vol. 23, pp. 1128–35.

    Article  Google Scholar 

  15. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399, ASTM, West Conshohocken, PA, 2001.

  16. ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 258–73.

  17. T. Mukai, M. Yamanoi, and K. Higashi: Mater. Trans., 2001, vol. 42, pp. 2652–54.

    Article  CAS  Google Scholar 

  18. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055–65.

    Article  CAS  Google Scholar 

  19. S.R. Agnew and O. Duygulu: Int. J. Plast., 2005, vol. 21, pp. 1161–93.

    Article  CAS  Google Scholar 

  20. S. Hwang, C. Nishimura, and P.G. McCormick: Scripta Mater., 2001, vol. 44, pp. 1507–11.

    Article  CAS  Google Scholar 

  21. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Mater. Trans., 2003, vol. 44, pp. 445–51.

    Article  CAS  Google Scholar 

  22. H.J. Frost and M.F. Ashby: Deformation-Mechanism Map, Pergamon Press, Oxford, United Kingdom, 1982, p. 44.

    Google Scholar 

  23. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  24. The Japan Society for Technology of Plasticity, Forging, Corona-shya, Tokyo, 1991, p. 71.

  25. W.J. Kim, S.J. Yoo, and J.B. Lee: Scripta Mater., 2010, vol. 62, pp. 451–54.

    Article  CAS  Google Scholar 

  26. A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, pp. 1199–1207.

    Article  CAS  Google Scholar 

  27. J.C. Tan and M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 124–32.

    Article  Google Scholar 

  28. S.E. Ion, F.J. Humphreys, and S.H. White: Acta Metall., 1982, vol. 30, pp. 1909–19.

    Article  CAS  Google Scholar 

  29. X.Y. Yang, H. Miura, and T. Sakai: Mater. Trans., 2003, vol. 44, pp. 197–203.

    Article  CAS  Google Scholar 

  30. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu: Scripta Mater., 1969, vol. 3, pp. 927–30.

    Article  CAS  Google Scholar 

  31. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1996.

    Google Scholar 

  32. R. Kaibyshev and O. Stidikov: Z. Metallkd., 1994, vol. 85, pp. 738–843.

    CAS  Google Scholar 

  33. H. Watanabe and K. Ishikawa: Mater. Sci. Eng. A, 2009, vol. 523, pp. 304–11.

    Article  Google Scholar 

  34. M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El. Kadiri, and W.R. Whittington: Scripta Mater., 2009, vol. 60, pp. 182–85.

    Article  CAS  Google Scholar 

  35. The Japan Institutes of Metals, Zairyokyodo-no-genshiron, Maruzen, Tokyo, 1985, p. 20.

  36. S.G. Song and G.T. Gray III: Acta Mater., 1995, vol. 43, pp. 2325–37.

    Article  CAS  Google Scholar 

  37. W.D. Biggs and P.L. Pratt: Acta Mater., 1958, vol. 6, pp. 694–703.

    Article  CAS  Google Scholar 

  38. A. Gilbert, G.T. Hand, C.N. Reid, and B.A. Wilcox: Acta Mater., 1964, vol. 12, pp. 754–55.

    Article  Google Scholar 

  39. D. Ando, J. Koike, and Y. Sutou: Acta Mater., 2010, vol. 58, pp. 4316–24.

    Article  CAS  Google Scholar 

  40. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.

    Article  CAS  Google Scholar 

  41. E.W. Qin, L. Lu, N.R. Tao, and K. Lu: Scripta Mater., 2009, vol. 60, pp. 539–42.

    Article  CAS  Google Scholar 

  42. H. Somekawa, K. Nakajima, A. Singh, and T. Mukai: Phil. Mag. Lett., 2010, vol. 90, pp. 831–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. K. Nakajima and Ms. M. Isaki (National Institute for Materials Science) for the TEM sample preparation by FIB and the experimental help, respectively. This work was supported by a JSPS Grant-in-Aid for Young Scientists (B), Grant No. 21760564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Somekawa.

Additional information

Manuscript submitted November 9, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somekawa, H., Inoue, T., Singh, A. et al. Deformation Mechanism in the Crack-Tip Region of Fine-Grained Magnesium Alloy. Metall Mater Trans A 42, 2475–2480 (2011). https://doi.org/10.1007/s11661-011-0642-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0642-y

Keywords

Navigation