Skip to main content
Log in

Observation and Modeling of Stress Corrosion Cracking in High Pressure Gas Pipe Steel

  • Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion cracking (SCC) is commonly observed to form a colony of closely spaced multiple cracks. Four stages of SCC colony evolution are discussed. The first is the colony initiation stage (CIS), which is associated with formation of corrosion pits randomly distributed over a certain domain of the surface exposed to an aggressive environment. Electrochemical processes play a leading role in CIS. The individual crack growth (ICG) driven by a combination of mechanical stresses and electrochemical processes constitutes the second stage. At the end of the second stage, the individual cracks reach certain proximity of one another resulting in much crack interaction. This becomes a transition to the third, strong crack interaction and clusters formation, stage. Cluster growth and individual crack or a cluster instability leading to the ultimate failure constitute the final, fourth stage of the SCC evolution process. In this article, we present observations and a general approach to modeling the first two stages of SCC, i.e., CIS and ICG, that together constitute the major part of the total lifetime of an engineering structure serving under SCC conditions. A computer simulation of individual SC crack growth is developed and compared with a large set of SCC observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Zhang, J. Fan, Y. Gogotsi, A. Chudnovsky, and A. Teitsma: Proc. 4th Int. Symp. on Risk, Economy and Safety, Failure Minimization and Analysis, Umhlanga Rocks, South Africa, July 2000.

  2. A. Chudnovsky, Y.G. Gogotsi, B. Zhang, S. Hirnyj, J. Fan, and T.J. Kirchhartz: GRI Report No. GRI-99/0163, Gas Research Institute, Des Plaines, IL, 1998.

  3. B. Zhang, Y. Gogotsi, A. Chudnovsky, and A. Teitsma: Proc. 1998 Int. Gas Research Conf., San Diego, CA, Nov. 1998, pp. 607–17.

  4. B. Zhang, J. Fan, Y. Ying, B.-H. Choi, A. Chudnovsky, and A. Teitsma: Proc. 2001 Int. Gas Research Conf., Amsterdam, Netherlands, Nov. 2001.

  5. C.K. Eilerts: Industrial Eng. Chem., 1949, vol. 41, pp. 1716–17.

    Article  CAS  Google Scholar 

  6. A. Chudnovsky: NASA Contractor Report No. 174634, Cleveland, OH, Mar. 1984.

  7. J.A. Beavers and J.T. Johnson: PRC International Annual Report No. R283-01, Dublin, OH, May 1999.

  8. B.-H. Choi and A. Chudnovsky: Int. J. Fract., 2002, vol. 116, pp. L43–L48.

    Article  CAS  Google Scholar 

  9. TransCanada Pipelines: Report on 1987 Pipe Integrity Program, SCC Research Program and Planned 1988 SCC Research Program, Calgary, 1988.

  10. M. Elboujadaini, Y.-Z. Wang, and R.W. Revie: Proc. 2000 Int. Pipeline Conf., ASME, New York, NY, Oct. 2000, vol. 2, pp. 967–78.

  11. C.-S. Oh and Y.-J. Kim: Proc. KSME Fall Conf., KSME, Seoul, Republic of Korea, Nov. 2007, pp. 69–73.

  12. H. Jasarevic, A. Chudnovsky, J.W. Dudley, and G.K. Wong: Int. J. Fract., 2009, vol. 158, pp. 73–80.

    Article  Google Scholar 

  13. W.A. Weibull: J. Appl. Mech., 1951, vol. 18, pp. 293–97.

    Google Scholar 

  14. B.G. Ateya and H.W. Pickering: J. Electrochem. Soc., 1975, vol. 122, pp. 1018–25.

    Article  CAS  Google Scholar 

  15. O.N. Romaniv and G.N. Nikiforchin: Metallurgiya, Moscow, 1986.

  16. R.P. Wei and J.D. Landes: Mater. Res. Standards, 1969, vol. 9, pp. 25–36.

    Google Scholar 

  17. R.P. Wei and L. Gallaher: Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2, Houston, TX, 1972, pp. 396–408.

    Google Scholar 

  18. C.P. Austin and J. Walker: Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2, Houston, TX, 1972, pp. 424–36.

    Google Scholar 

  19. D. Rhodes, J.K. Musuva, and J.C. Radon: Fatig. Fract. Eng. Mater. Struct., 1981, vol. 4, pp. 49–63.

    Article  CAS  Google Scholar 

  20. R.N. Parkins, W.K. Blanchard, and B.S. Delanty: Corrosion, 1994, vol. 50, pp. 394–408.

    Article  CAS  Google Scholar 

  21. B.-H. Choi, A. Chudnovsky, R. Paradkar, W. Michie, Z. Zhou, and P.-M. Cham: Poly. Degrad. Stabil., 2009, vol. 94, pp. 859–67.

    Article  CAS  Google Scholar 

  22. J.D. Eshelby: Philos. Trans. R. Soc. A, 1951, vol. 244, pp. 87–112.

    Article  Google Scholar 

  23. J.D. Eshelby: J. Elasticity, 1975, vol. 5, pp. 321–35.

    Article  Google Scholar 

  24. Y.E. Pak and G. Herrmann: Int. J. Eng. Sci., 1986, vol. 24, pp. 1365–74.

    Article  Google Scholar 

  25. S. deGroot and P. Mazur: Non-Equilibrium Thermodynamics, Dover Publications, Mineola, NY, 1984.

    Google Scholar 

  26. I. Prigogine: Introduction to Thermodynamics of Irreversible Processes, Interscience Publishers, New York, NY, 1968.

    Google Scholar 

  27. B.-H. Choi, W. Balika, A. Chudnovsky, G. Pinter, and R.W. Lang: Poly. Sci. Eng., 2009, vol. 49, pp. 1421–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express deep gratitude to Ilhyun Kim and Yongjian Zhao for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Chudnovsky.

Additional information

Manuscript submitted January 28, 2010.

Appendix A

Appendix A

1.1 Representation of the concentration of hydrogen at the crack tip

The distribution of the concentration of hydrogen, C(x, t), satisfies the diffusion equation

$$ {\frac{\partial C(x,t)}{\partial t}} = D{\frac{{\partial^{2} C(x,t)}}{{\partial x^{2} }}} $$
(A1)

The vector flux of hydrogen is \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q} (x,t)_{|x = 0} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q} (t) = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q} \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{e}_{1} , \) and the boundary and initial conditions are defined as

$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q} (x,t)_{|x = 0} = \left\{ {\begin{array}{*{20}c} { - k(R,t) \cdot \left[ {C(x,t)_{|x = 0} - C_{\max } } \right],\begin{array}{*{20}c} {\text{if}} & {C(x,t)_{{\left| {x = 0} \right.}} > 0} \\ \end{array} } \\ {0,\quad \begin{array}{*{20}c} {\text{if}} & {C(x,t)_{{\left| {x = 0} \right.}} = 0} \\ \end{array} } \\ \end{array} \quad {\text{and}}\;C(x,t)_{|t = 0} = 0} \right. $$
(A2)

where C max stands for the saturated hydrogen density and the coefficient k depends on the stress ratio and time. In addition, the solution of Eq. [A1] can be expressed as a standard form:

$$ C(x,t) = {\frac{C(0,t)}{{\sqrt {\pi 4Dt} }}} \cdot \exp \left[ { - {\frac{{x^{2} }}{4Dt}}} \right] $$
(A3)

We can define C(0, t) = C 0(t); thus, Eq. [A3] represents the shape of the distribution in time. Green’s function for density C(x, t) due to unit mass concentrated at (ξ, τ) can be represented as

$$ G(x,t;\xi ,\tau ) = {\frac{1}{{\sqrt {4\pi D(t - \tau )} }}}\exp \left[ { - {\frac{{(x - \xi )^{2} }}{4D(t - \tau )}}} \right] $$
(A4)

For τ domain and x = 0, i.e., hydrogen diffused only from the crack tip,

$$ G(x,t;\xi ,\tau ) = {\frac{\Updelta M(\tau )}{{\sqrt {4\pi D(t - \tau )} }}}\exp \left[ { - {\frac{{(x - \xi )^{2} }}{4D(t - \tau )}}} \right] $$
(A5)

where

$$ \Updelta M(t) = \dot{C}_{0} \Updelta \tau = k\left[ {C_{\max } - \left. {C(x,\tau )} \right|_{x = 0} } \right] \cdot \Updelta \tau $$
(A6)

Plugging Eq. [A6] into Eq. [A5] leads to

$$ G(x,t;0,\tau ) = \int_{0}^{t} {{\frac{{k\left \lfloor {C_{\max } - \left. {C(x,\tau )} \right|_{x = 0} } \right \rfloor}}{{\sqrt {4\pi D(t - \tau )} }}}\exp \left[ { - {\frac{{x^{2} }}{4D(t - \tau )}}} \right]} d\tau $$
(A7)

Plugging Eq. [A7] into Eq. [A6] leads to

$$ C(x,t) = \int_{0}^{t} {{\frac{{k\left \lfloor {C_{\max } - \left. {C(x,\tau )} \right|_{x = 0} } \right \rfloor}}{{\sqrt {4\pi D(t - \tau )} }}}\exp \left[ { - {\frac{{x^{2} }}{4D(t - \tau )}}} \right]} d\tau $$
(A8)

For \( \left. {C(x,t)} \right|_{x = 0} = C_{0} (t), \) Eq. [A8] can be rewritten as

$$ C_{0} (t) + \int_{0}^{t} {{\frac{k}{{\sqrt {4\pi D(t - \tau )} }}}C_{0} (\tau )} d\tau = {\frac{{kC_{\max } }}{{\sqrt {4\pi D} }}} \cdot \int_{0}^{t} {{\frac{d\tau }{{\sqrt {t - \tau } }}}} $$
(A9)

So, Eq. [A9] can be expressed as an integral equation as

$$ C_{0} (t) + \int_{0}^{t} {{\frac{k}{{\sqrt {4\pi D(t - \tau )} }}}C_{0} (\tau )} d\tau = {\frac{{kC_{\max } }}{{\sqrt {4\pi D} }}} \cdot \sqrt t $$
(A10)

Equation [A10] is a known special kind of integral equation, i.e., Volterra type of the second kind, so Eq. [A10] can be solved by using Laplace transforms and inverse Laplace transforms. The solution of the integral equation is as follows:

$$ C_{0} (t) = - {\frac{{2\sqrt D C_{\max } }}{{k\sqrt {\pi t} }}} + C_{\max } + {\frac{{2C_{\max } \sqrt D }}{k}}\left( {{\frac{1}{{\sqrt {\pi t} }}} - {\frac{{\exp \left[ {{\frac{{k^{2} t}}{4D}}} \right] \cdot k\left( {1 - {\text{erf}}\left[ {{\frac{k\sqrt t }{2\sqrt D }}} \right]} \right)}}{2\sqrt D }}} \right) $$
(A11)

Finally, Eq. [A11] can be expressed simply as

$$ C_{0} (t) = C_{\max } \left( {1 - \exp \left[ {{\frac{{k^{2} t}}{4D}}} \right]\left\{ {1 - {\text{erf}}\left[ {{\frac{k\sqrt t }{2\sqrt D }}} \right]} \right\}} \right) $$
(A12)

The general solution of C(x, t) can be obtained by plugging Eq. [A12] into Eq. [A8] as follows, and can be solved by numerical approaches:

$$ C(x,t) = {\frac{{kC_{\max } }}{{2\sqrt {\pi D} }}}\int_{0}^{t} {{\frac{{\exp \left[ {{\frac{{k^{2} \tau }}{4D}}} \right]\left\{ {1 - {\text{erf}}\left[ {{\frac{k\sqrt \tau }{2\sqrt D }}} \right]} \right\}}}{{\sqrt {t - \tau } }}}\exp \left[ { - {\frac{{x^{2} }}{4D(t - \tau )}}} \right]} d\tau $$
(A13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BH., Chudnovsky, A. Observation and Modeling of Stress Corrosion Cracking in High Pressure Gas Pipe Steel. Metall Mater Trans A 42, 383–395 (2011). https://doi.org/10.1007/s11661-010-0384-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0384-2

Keywords

Navigation