Skip to main content
Log in

Observation and Modeling of Brittle Fracture Initiation in a Micro-Heterogeneous Material

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Observations and characterization of brittle fracture initiation in a micro-heterogeneous material (sandstone) are conducted using the standard indirect tensile strength test. Acoustic emissions, optical microscopy and scanning electron microscopy (SEM) are employed for monitoring and characterizing the discrete micro-mechanical events preceding macroscopical fracture. The observations suggest that brittle fracture initiation is the end result of a microscopic damage accumulation process. A simple statistical model of micro damage accumulation leading to brittle fracture in a micro-heterogeneous material is also proposed. The model is calibrated by matching the coefficient of variation of measured ultimate stress with that resulting from the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM (1989). Annual Book of Standards: Standard test method for splitting tensile strength of intact rock core specimens (designation D 4645-87). American Society for Testing and Materials, 4, 851-6.

  • Atkinson, B. K. & Meredith, P. G. (1987). Experimental Fracture Mechanics Data for Rocks and Minerals. Fracture Mechanics of Rock (ed. Atkinson, B. K.). Academic Press, London, 477-525.

  • Berdichevsky V., Khanh L. (2005) On the microcrack nucleation in brittle solids. Int. J. of Fracture 133: 47–54

    Article  Google Scholar 

  • Born M. (1939) Thermodynamics of crystals and melting. J. Chem. Phys. 7: 591–603

    Article  ADS  CAS  Google Scholar 

  • Born M. (1940) On the stability of crystal lattices. Proc. Cambr. Philos. Soc. 36: 160–172

    Article  CAS  MathSciNet  Google Scholar 

  • Buchel A., Sethna J.P. (1996) Elastic Theory has Zero Radius of Convergence. Phys.Rev.Lett. 77: 1520–1523

    Article  PubMed  ADS  Google Scholar 

  • Chen C., Pan E., Amadei B. (1998) Determination of Deformability and Tensile Strength of Anisotropic Rock Using Brazilian Tests. Int. J. Rock Mech. Min. Sci. 35: 43–61

    Article  Google Scholar 

  • Curtin W.A. (1998) Size Scaling of Strength in Heterogeneous Materials. Phys.Rev.Lett. 80: 1445–1448

    Article  ADS  CAS  Google Scholar 

  • Dudley, J.W., Shlyapobersky, J., Chudnovsky, A., Glaser, S. (1997), “Laboratory Investigation of Fracture Processes in Hydraulic Fracturing,” Annual Report, Gas Research Institute Report GRI-97/0300, Shell E&P Technology Co., Houston, November.

  • Glenn L.A., Chudnovsky A (1986) Strain-Energy Effects on Dynamic Fragmentation,. J. of Appl. Phys 59: 1379–1380

    Article  ADS  CAS  Google Scholar 

  • Golubovic L., Feng S. (1991) Rate of Microcrack nucleation. Phys. Rev. A, 43: 5223–5227

    Article  PubMed  ADS  Google Scholar 

  • Hashida T., Takahashi H. (1993) Significance of AE Crack Monitoring in Fracture Toughness Evaluation and Nonlinear Rock Fracture Mechanics. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30: 47–60

    Article  Google Scholar 

  • Hoagland R.G., Hahn G.T., Rosefield A.R. (1975) Influence of Microstructure on Fracture Propagation in Rock. Rock Mech. 5: 77–106

    Article  Google Scholar 

  • Ising, E. (1925). Beitrag zur Theory des Ferromagnetismus. Z. Phys. (in German) 31, 253-258.

  • ISRM (1978). Suggested methods for determining tensile strength of rock materials, Int. J. Rock Mech. Min, Sci. & Geomech. Abstr. 15, 99-103.

  • Kanuan S, Chudnovsky A. (1999) A Model of Quasibrittle Fracture of Solids. Int. J. of Dam. Mech. 8: 19–40

    Google Scholar 

  • Kachanov L.M. (1958) On Creep Rapture Time. Proc. Acad. Sci., USSR, Div. Eng. Sci. 8: 26–31

    Google Scholar 

  • Schicker J., Pfuff M. (2006) Statistical Modeling of Fracture in Quasi-Brittle Materials. Adv. Eng. Mater. 8: 406–410

    Article  Google Scholar 

  • Suzuki M., Abe H., Takanashi H., Tamakawa K., Kikuchi M. (1980) Acoustic Emission Characteristics and Fracture Toughness of Sandstone. Technol. Rep. Tohoku Univ. 45: 239–272

    Google Scholar 

  • Tetsuya K., Hisashi A., Akira M., Yukinori M. (2005) Effect of Specimen Size and Rock Properties on the Uniaxial Compressive Strength of Ryukyu Limestone. J. Japan Soc. of Eng. Geology 46: 2–8

    Google Scholar 

  • Weibull W.A. (1951) A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 18: 293–297

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasarevic, H., Chudnovsky, A., Dudley, J. et al. Observation and Modeling of Brittle Fracture Initiation in a Micro-Heterogeneous Material. Int J Fract 158, 73–80 (2009). https://doi.org/10.1007/s10704-009-9365-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9365-0

Keywords

Navigation