Skip to main content
Log in

Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrafine-grained, dual-phase (UFG DP) steels were produced by a new route using an uncommon cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting microstructures. The effects of processing parameters such as rolling reduction, intercritical annealing temperature, and time on the microstructural evaluations have been studied. UFG DP steels with an average grain size of about 1 to 2 μm were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructures. The kinetics of ferrite recrystallization and austenite formation were studied based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. The proposed model for describing the isothermal austenite formation kinetics was applied successfully to the nonisothermal conditions. It was found that complete recrystallization of ferrite before the austenite formation led to the formation of a large extent randomly distributed austenite in the ferrite matrix and a chain-networked structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.C. Chakraborti and M.K. Mitra: Mater. Sci. Eng. A, 2007, vol. 466, pp. 123–33.

    Article  Google Scholar 

  2. K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 796–809.

    Article  Google Scholar 

  3. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.

    Article  Google Scholar 

  4. M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Mater. Sci. Eng. A, 2013, vol. 568, pp. 171–75.

    Article  Google Scholar 

  5. M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5313–17.

    Article  Google Scholar 

  6. Y.L. Kang: Theory and Technology of Processing and Forming for Advanced Automobile Steel Sheets, Metallurgical Industry Press, Beijing, China, 2009.

    Google Scholar 

  7. P. Jacques, X. Cornet, P. Harlet, J. Ladriere, and F. Delannay: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.

    Article  Google Scholar 

  8. G.R. Speich and R.L. Miller: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., AIME, New York, 1979, pp. 13–22.

  9. J.O. Arnold and A. McWilliams: J. Iron Steel Inst., 1905, No. 2, p. 352.

  10. G.A. Roberts and R.F. Mehl: Trans. ASM, 1943, vol. 31, pp. 613–50.

    Google Scholar 

  11. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419–28.

    Article  Google Scholar 

  12. S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor: ISIJ Int., 1994, vol. 34, pp. 191–97.

    Article  Google Scholar 

  13. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Article  Google Scholar 

  14. T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.

    Article  Google Scholar 

  15. M. Asadi Asadabad, M. Goodarzi, and Sh. Kheirandish: ISIJ Int., 2008, vol. 48, pp. 1251–55.

    Article  Google Scholar 

  16. G.I. Garcia and A.J. Deardo: Metall. Trans. A, 1981, vol. 12, pp. 521–30.

    Article  Google Scholar 

  17. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.

    Article  Google Scholar 

  18. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16, pp. 1385–92.

    Article  Google Scholar 

  19. Y. Okitsu, N. Takata, and N. Tsuji: Scripta Mater., 2009, vol. 60, pp. 76–79.

    Article  Google Scholar 

  20. A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2041–52.

    Article  Google Scholar 

  21. D. Quidort and Y.J.M. Brechet: ISIJ Int., 2002, vol. 42, pp. 1010–17.

    Article  Google Scholar 

  22. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958–64.

    Article  Google Scholar 

  23. J. Qu, W. Dabboussi, F. Hassani, J. Nemes, and S. Yue: ISIJ Int., 2005, vol. 45, pp. 1741–46.

    Article  Google Scholar 

  24. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2012, vol. 52, pp. 874–83.

    Article  Google Scholar 

  25. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.

    Article  Google Scholar 

  26. S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370–79.

    Article  Google Scholar 

  27. S. Sun and M. Pugh: Mater. Sci. Eng. A, 2002, vol. 335, pp. 298–308.

    Article  Google Scholar 

  28. A. Bag and K.K. Ray: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2400–403.

    Article  Google Scholar 

  29. S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.

    Article  Google Scholar 

  30. J. Burke: Kinetics of Phase Transformations in Metals, Pergamon, London, 1965, p. 145.

    Google Scholar 

  31. E.S. Machlin: An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science, Elsevier, Amsterdam, 2007, p. 284.

    Google Scholar 

  32. J. Kohout: J. Mater. Sci., 2008, vol. 43, pp. 1334–39.

    Article  Google Scholar 

  33. Z. Guo, W. Sha, and D. Li: Mater. Sci. Eng. A, 2004, vol. 373, pp. 10–20.

    Article  Google Scholar 

  34. J. Lis and A. Lis: J. Achiev. Mater. Manufact. Eng., 2008, vol. 26, pp. 195–98.

    Google Scholar 

  35. H. Sueyoshi and K. Suenaga: J. Jpn. Inst. Met., 1987, vol. 51, pp. 518–24.

    Google Scholar 

  36. C. Wert: Phys. Rev., 1950, vol. 79, pp. 601–605.

    Article  Google Scholar 

  37. J.S. Kirkaldy and D. Venugopalan: in Phase Transformations in Ferrous Alloys, A.R. Marker and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 125–48.

  38. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, Chapman & Hall, London, 1992, p. 78.

    Book  Google Scholar 

  39. J. Huang, R.P. Hammond, K. Conlon, and W.J. Poole: in Proceedings of International Conference on TRIP-Aided High Strength Ferrous Alloys, B.C. De Cooman, ed., Wissenschaftsverlag Mainz GmbH, Aachen, 2002, pp. 187–91.

  40. N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128–33.

    Article  Google Scholar 

  41. N. Peranio, Y.J. Li, F. Roters, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4161–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mazaheri.

Additional information

Manuscript submitted February 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri, Y., Kermanpur, A., Najafizadeh, A. et al. Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures. Metall Mater Trans A 47, 1040–1051 (2016). https://doi.org/10.1007/s11661-015-3288-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3288-3

Keywords

Navigation