Skip to main content
Log in

High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin–Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Dodd: Foundry Trade J., 1979, vol. 147, pp. 963–1007.

    CAS  Google Scholar 

  2. D. Li, R. Perrin, G. Burger, D. McFarlan, B. Black, R. Logan, and R. Williams: SAE Technical Paper Series No. 2004-01-0792, SAE International, Warrendale, PA, 2004.

  3. S.H. Park, J.M. Kim, H.J. Kim, S.J. Ko, H.S. Park, and J.D. Lim: SAE Technical Paper Series No. 2005-01-1688, SAE International, Warrendale, PA, 2005.

  4. W. Fairhurst and K. Röhrig: Foundry Trade J., 1979, vol. 146, pp. 657–81.

    CAS  Google Scholar 

  5. O.H. Basquin: Proc. ASTM, 1910, vol. 10, pp. 625–30.

    Google Scholar 

  6. L.F. Coffin: Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  7. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  8. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., London, 1988, pp. 387–94.

    Google Scholar 

  9. L.E. Tucker, R.W. Landgraf, and W.R. Brose: SAE Technical Report No. 740729, SAE International, Warrendale, PA, Feb. 1974.

  10. B.I. Sandor: Fundamentals of Cyclic Stress and Strain, 1st ed., University of Wisconsin Press, Madison, WI, 1972, p. 51.

    Google Scholar 

  11. S. Rabinowitz and P. Beardmore: J. Mater. Sci., 1974, vol. 9, pp. 81–99.

    Article  ADS  CAS  Google Scholar 

  12. R.W. Landgraf, J. Morrow, and T. Endo: J. Mater. JMLSA, 1969, vol. 4, pp. 176–88.

    Google Scholar 

  13. S.D. Antolovich and A. Saxena: Thermomech. Fatigue, 2002, vol. 11, pp. 738–45.

    Google Scholar 

  14. A.G. Goursat and W.W. Smeltzer: Oxid. Met., 1973, vol. 6, pp. 101–16.

    Article  CAS  Google Scholar 

  15. P. Kofstad: High Temperature Corrosion, 1st ed., Elsevier Applied Science, London, 1988.

    Google Scholar 

  16. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High-Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 101–62.

    Google Scholar 

  17. D.A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 1996, pp. 399–438.

    Google Scholar 

  18. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433–68.

    Article  CAS  Google Scholar 

  19. V.H.J. Lee, B. Gleeson, and D.J. Young: Oxid. Met., 2005, vol. 63, pp. 15–31.

    Article  CAS  Google Scholar 

  20. R.C. Logani and W.W. Smeltzer: Oxid. Met.,1971, vol. 3, pp. 15–32.

    Article  CAS  Google Scholar 

  21. F.H. Stott, G.J. Gabriel, F.I. Wei, and G.C. Wood: Werkst. Korr., 1987, vol. 38, pp. 521–31.

    Article  CAS  Google Scholar 

  22. F. Tholence and M. Norell: J. Phys. Chem. Solids, 2005, vol. 66, pp. 530–34.

    Article  ADS  CAS  Google Scholar 

  23. F. Tholence and M. Norell: Surf. Interface Anal., 2002, vol. 34, pp. 535–39.

    Article  CAS  Google Scholar 

  24. F. Tholence and M. Norell: Oxid. Met., 2008, vol. 69, pp. 13–36.

    Article  CAS  Google Scholar 

  25. Standard Test Method for Elevated Temperature Tension Tests of Metallic Materials, ASTM E21-92, ASTM International, West Conshohocken, PA, 1998.

  26. Standard Practice for Simple Static Oxidation Testing, ASTM G54-84, ASTM International, West Conshohocken, PA, 1996.

  27. J. Cao, F. Bai, and Z. Li: Mater. Sci. Eng. A, 2006, vol. 424, pp. 47–52.

    Article  Google Scholar 

  28. C. Zhaokuang, Y. Jinjang, S. Xiaofeng, G. Hengrong, and H. Zhuangqi: Mater. Sci. Eng. A, 2008, vol. 488, pp. 389–97.

    Article  Google Scholar 

  29. D.J. Young and B. Gleeson: Corros. Sci., 2002, vol. 44, pp. 345–57.

    Article  CAS  Google Scholar 

  30. B. Gleeson: Corrosion and Environmental Degradation of Materials, V.II: Materials Science and Technology V.19, 1st ed., Wiley-VCH, Weinheim, Germany, 2000, pp. 174–228.

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. This program was funded by the Ministry of Science and Technology (Grant No. R0A-2007-000-10011-0) and partly by the Metals Data Bank Program funded by the Ministry of Knowledge and Economy (MKE) (Grant No. 07NB-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jang.

Additional information

Manuscript submitted December 19, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Jang, H. & Oh, YJ. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons. Metall Mater Trans A 40, 2087–2097 (2009). https://doi.org/10.1007/s11661-009-9911-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9911-4

Keywords

Navigation