Skip to main content
Log in

High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of two ductile cast irons was investigated in synthetic diesel and gasoline exhaust gases. The alloys were a SiMo (Fe3.86Si0.6Mo3C) and a Ni-Resist (Fe32Ni5.3Si2.1C). Polished sections were exposed at temperatures between 650 and 1,050 °C, mostly for 50 h. The oxidation product was characterized by means of SEM/EDX, AES, XPS and XRD. Iron oxides nodules formed above a continuous layer of Fe–Si-oxide for SiMo. The alloy failed in forming a continuous silica layer at low temperatures. At 850 °C and above silica was formed, but austenite formation enhanced the decarburization. Escaping CO/CO2 increased the oxide porosity, and consequently the oxidation rate. The oxidation resistance of Ni-Resist was dependent on Cr assisting the formation of SiO2. However, this effect was restrained to cell boundaries in particular when water enhanced the Cr evaporation or the diffusion was slow at low temperatures. Then, the rapid oxidation left metallic Ni particles in the inner oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Tholence and M. Norell, Materials Science Forum 369–372, 197 (2001).

    Google Scholar 

  2. W. Fairhurst and K. Röhrig, Foundry Trade Journal 146, 657 (1979).

    CAS  Google Scholar 

  3. K. Röhrig, in Proceedings of the conf. on Castings for the Chemical Process Industry, Saint-Etienne, France, (Bulletin du Cercle d’Etudes des Metaux (France), 1993) p. 9.1

  4. Nickel as an Alloy in Cast Iron. Current information report, ed. American Foundrymen’s Society, Golf & Wolf Rd. Des Plaines, III. 60016 (1978), p. 29

  5. D. L. Torkington, Metal Progress 119, 38 (1981).

    CAS  Google Scholar 

  6. P. Bastid, E. Andrieu, C. Grente, M. Ortiz, and E. Marconnet, Ingénieurs de l’automobile 686, 43 (1994).

    Google Scholar 

  7. High Temperature Materials for Exhaust Manifolds. SAE (1999), SAE Standards Report no. J2515.

  8. D. Li, R. Perrin, G. Burger, D. McFarlan, B. Black, R. Logan, and R. Williams, SAE Technical Paper Series, 2004–01–0792 (2004).

  9. S. H. Park, J. M. Kim, H. J. Kim, S. J. Ko, H. S. Park, and J. D. Lim, SAE Technical Paper Series, SAE 2005–01–1688 (2005).

  10. C. Pelhan, Giessereiforschung 25, 73 (1973).

    CAS  Google Scholar 

  11. A. Rahmel, Nickel-Berichte 25, 1 (1967).

    CAS  Google Scholar 

  12. C. Pehlan, in Proceedings of 2nd Internat. Symposium on the Metallurgy of Cast Iron (1976), p. 841.

  13. C. Pelhan and J. Lamut, Fonderia Ital. 9–10, 73 (1983).

    Google Scholar 

  14. H. D. Merchant, in Proceedings of a seminar on Recent Research on Cast Iron, Detroit, USA (Gordon & Breach, New York, 16–18 June 1964), p. 793.

  15. H. D. Merchant, Oxidation of Metals 2, 145 (1970).

    Article  CAS  Google Scholar 

  16. F. Tholence and M. Norell, Journal of Physics and Chemistry of Solids 66, 530 (2005).

    Article  CAS  Google Scholar 

  17. J. A. Nelson, in Metals Handbook, Cast Irons, 9th edn. (ASM, Materials Park, Ohio, 1985), p. 242.

  18. R. Boeri and F. Weinberg, Transactions of the American Foundrymen’s Society 97, 179 (1989).

    Google Scholar 

  19. N. K. Datta and N. N. Engel, Transactions of American Foundrymen’s Society 84, 431 (1976).

    Google Scholar 

  20. P. C. Liu and C. R. Loper Jr., Transactions of the American Foundrymen’s Society 89, 131 (1981).

    CAS  Google Scholar 

  21. B. Sundman, B. Jansson, and J. O. Andersson, Computer Coupling of Phase Diagrams and Thermochemistry 9, 153 (1985).

    CAS  Google Scholar 

  22. F. Tholence and M. Norell, Surface and Interface Analysis 34, 535 (2002).

    Article  CAS  Google Scholar 

  23. A. Järdnäs, J.-E. Svensson, and L.-G. Johansson, Materials Science Forum 369–372, 173 (2001).

    Google Scholar 

  24. V. Lanteri, D. Huin, P. Drillet, D. Bouleau, P. Henry, and H. Gaye, in Microscopy of Oxidation 3, Cambridge (The Institute of Metals, London, 1996), p. 535.

  25. I. Barin, Thermochemical Data of Pure Substances (VCH Verschlagsgesellschaft mbH. Weinheim, 1993).

  26. A. Atkinson, Corrosion Science 22, 87 (1982).

    Article  CAS  Google Scholar 

  27. I. Svedung and N.-G. Vannerberg, Corrosion Science 14, 391 (1974).

    Article  CAS  Google Scholar 

  28. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  CAS  Google Scholar 

  29. I. C. H. Hughes, B.C.I.R.A. Journal 8, 7 (1960).

    CAS  Google Scholar 

  30. R. J. Maitland and I. C. H. Hughes, B.C.I.R.A. Journal 7, 203 (1958).

    CAS  Google Scholar 

  31. R. Durham, J. Lacaze, D. Monceau, and B. Pieraggi, Materials Science Forum 369–372, 181 (2001).

    Article  Google Scholar 

  32. C. W. Tuck, Corrosion Science 5, 631 (1965).

    Article  CAS  Google Scholar 

  33. K. Hauffe, in DECHEMA Corrosion Handbook, Hot Oxidizing Gases (VCH Publishers, New York, 1989), p. 77.

  34. T. Ban, K. Bohnenkamp, and H. J. Engell, Corrosion Science 19, 283 (1979).

    Article  CAS  Google Scholar 

  35. M. J. Brabers and C. E. Birchenall, Corrosion 14, 179t (1958).

    CAS  Google Scholar 

  36. J. Robertson and M. I. Manning, Materials Science and Technology 5, 741 (1989).

    CAS  Google Scholar 

  37. C. Wagner, Corrosion Science 5, 751 (1965).

    Article  CAS  Google Scholar 

  38. H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  39. H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  40. T. J. Carter, G. L. Wulf, and G. R. Wallwork, Corrosion Science 9, 471 (1969).

    Article  CAS  Google Scholar 

  41. G. E. Wasielewski and R. A. Rapp, in The superalloys, High-Temperature Oxidation (Wiley, New York, 1972), p. 287.

  42. C. Gindorf, L. Singheiser, and K. Hilpert, Steel Research 72, 528 (2001).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was done within the Swedish competence centre for High Temperature Corrosion. The authors acknowledge Volvo Truck Corporation for financial support and in particular U. Boman for valuable co-operation. Synthetic exhaust gas exposures were done at Volvo Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tholence, F., Norell, M. High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons. Oxid Met 69, 13–36 (2008). https://doi.org/10.1007/s11085-007-9081-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9081-y

Keywords

Navigation