Skip to main content
Log in

A Comparison of Columnar-to-Equiaxed Transition Prediction Methods Using Simulation of the Growing Columnar Front

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, the columnar-to-equiaxed transition (CET) in directionally solidified castings is investigated. Three CET prediction methods from the literature that use a simulation of the growing columnar front are compared to the experimental results, for a range of Al-Si alloys: Al-3 wt pct Si, Al-7 wt pct Si, and Al-11 wt pct Si. The three CET prediction methods are the constrained-to-unconstrained criterion, the critical cooling rate criterion, and the equiaxed index criterion. These methods are termed indirect methods, because no information is required for modeling the equiaxed nucleation and growth; only the columnar solidification is modeled. A two-dimensional (2-D) front-tracking model of columnar growth is used to compare each criterion applied to each alloy. The constrained-to-unconstrained criterion and a peak equiaxed index criterion agree well with each other and some agreement is found with the experimental findings. For the critical cooling rate criterion, a minimum value for the cooling rate (between 0.07 and 0.11 K/s) is found to occur close to the CET position. However, this range of values differs from those cited in the literature (0.15 to 0.16 K/s), leading to a considerable difference in the prediction of the CET positions. A reason for this discrepancy is suggested, based on the fundamental differences in the modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

dendrite growth coefficient

a 0 :

polynomial coefficient

a 1 :

polynomial coefficient

a 2 :

polynomial coefficient

C CV :

specific heat for a control volume

C L :

specific heat for liquid

C S :

specific heat for solid

c p :

specific-heat capacity

D :

diameter of ingot

d :

volume fraction of a control volume

e :

error

g s :

solid fraction

H :

height of the ingot

I :

equiaxed index

i :

grid coordinate

j :

grid coordinate

K :

thermal conductivity

K CV :

thermal conductivity of a control volume

K D :

derivative gain

K I :

integral gain

K L :

thermal conductivity of liquid

K P :

proportional gain

K S :

thermal conductivity of solid

L :

latent heat

n :

dendrite growth law exponent

ncols :

number of columns in a grid

nrows :

number of rows in a grid

P :

general polynomial value

Q :

growth restriction

q :

heat flux at the chill surface

q loss :

heat flux at the free liquid surface

s :

Laplace coordinate

T :

temperature

T E :

eutectic temperature

T init :

initial temperature

T L :

liquidus temperature

T M :

melting temperature of solvent material

t :

time coordinate

t q :

cutoff time for heat loss

U b :

undercooled bulk liquid

V CV :

control volume size

V m :

volume of mush in a control volume

v t :

dendrite growth velocity

ΔT :

undercooling

ΔT n :

nucleation undercooling

Δt :

time-step

Δx :

grid spacing

Δy :

grid spacing

ρ :

density

τ :

first-order lag constant

References

  1. A.E. Ares, L.M. Gassa, S.F. Gueijman, C.E. Schvezov: J. Cryst. Growth, 2008, vol. 310, pp. 1355–61

    Article  ADS  CAS  Google Scholar 

  2. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247–69

    Article  CAS  Google Scholar 

  3. J. Hutt, D. StJohn: Int. J. Cast Met. Res., 1998, vol. 11, pp. 13–22

    CAS  Google Scholar 

  4. K. Jackson, J. Hunt, D. Uhlmann, T. Seward: Trans. TMS-AIME, 1966, vol. 236, pp. 149–58

    CAS  Google Scholar 

  5. T.E. Quested, A.L. Greer: Acta Mater., 2005, vol. 53, pp. 4643–53

    Article  CAS  Google Scholar 

  6. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83

    Article  ADS  CAS  Google Scholar 

  7. M. Gäumann, R. Trivedi, W. Kurz: Mater. Sci. Eng., A, 1997, vols. A226–A228, pp. 763–69

    Google Scholar 

  8. M.A. Martorano, C. Beckermann, C.-A. Gandin: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1657–74

    Article  ADS  CAS  Google Scholar 

  9. S. McFadden, D.J. Browne, J. Banaszek: Mater. Sci. Forum, 2006, vol. 508, pp. 325–30

    Article  CAS  Google Scholar 

  10. C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1081–93

    Article  ADS  CAS  Google Scholar 

  11. C.-A. Gandin, M. Rappaz: Acta Metall. Mater., 1994, vol. 42, pp. 2233–46

    Article  ADS  CAS  Google Scholar 

  12. M. Wu, A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1465–75

    Article  ADS  CAS  Google Scholar 

  13. G. Guillemot, C.-A Gandin, H. Combeau, R. Heringer: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 545–56

    Article  ADS  Google Scholar 

  14. S. McFadden and D.J. Browne: Appl. Math. Model., 2009, vol. 33, pp. 1397–416

  15. D.J. Browne, J.D. Hunt: Numer. Heat Transfer, B-Fund., 2004, vol. 45, pp. 395–419

    Article  Google Scholar 

  16. S. McFadden, L. Sturz, H. Jung, N. Mangelinck-Noël, H. Nguyen-Thi, G. Zimmermann, B. Billia, D.J. Browne, D. Voss, D. Jarvis: J. Jpn. Soc. Micrograv. Appl., 2008, vol. 25, pp. 489–94

    Google Scholar 

  17. J. Li, J. Wang, G. Yang: J. Cryst. Growth, 2007, vol. 309, pp. 65–69

    Article  ADS  CAS  Google Scholar 

  18. A. Badillo, C. Beckermann: Acta Mater., 2006, vol. 54, pp. 2015–26

    Article  CAS  Google Scholar 

  19. H.B. Dong, P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68

    Article  CAS  Google Scholar 

  20. C.-A. Gandin: Acta Mater., 2000, vol. 48, pp. 2483–2501

    Article  CAS  Google Scholar 

  21. S.C. Flood, J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 543–51

    Article  ADS  CAS  Google Scholar 

  22. S.C. Flood, J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 552–60

    Article  ADS  CAS  Google Scholar 

  23. C.-A. Gandin: ISIJ Inter., 2000, vol. 40, pp. 971–79

    Article  CAS  Google Scholar 

  24. A.E. Ares, S.F. Gueijman, R. Caram, C.E. Schvezov: J. Cryst. Growth, 2005, vol. 275, pp. 319–27

    Article  ADS  Google Scholar 

  25. A.E. Ares, C.E. Schvezov: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1485–99

    Article  ADS  CAS  Google Scholar 

  26. C.A. Siqueira, N. Cheung, A. Garcia: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2107–18

    Article  CAS  Google Scholar 

  27. C.A. Siqueira, N. Cheung, A. Garcia: J. Alloys Compd., 2003, vol. 351, pp. 126–34

    Article  CAS  Google Scholar 

  28. M.D. Peres, C.A. Siqueira, A. Garcia: J. Alloys Compd., 2004, vol. 381, pp. 168–81

    Article  CAS  Google Scholar 

  29. M.V. Canté, K.S. Cruz, J.E. Spinelli, N. Cheung, A. Garcia: Mater. Lett., 2007, vol. 61, pp. 2135–38

    Article  Google Scholar 

  30. D.J. Browne: ISIJ Int., 2005, vol. 45, pp. 37–44

    Article  CAS  Google Scholar 

  31. R.D. Doherty, P.D. Cooper, M.H. Bradbury, F.J. Honey: Metall. Trans. A, 1977, vol. 8A, pp. 397–402

    ADS  CAS  Google Scholar 

  32. I. Ziv, F. Weinberg: Metall. Trans. B, 1989, vol. 20B, pp. 731–34

    Article  ADS  CAS  Google Scholar 

  33. S. McFadden, D.J. Browne: in Proc. 5th Decennial Int. Conf. Solidification Processing, H. Jones, ed., University of Sheffield, Sheffield, United Kingdom, 2007, pp. 172–75

    Google Scholar 

  34. S. McFadden, D.J. Browne, J. Banaszek: The John Campbell Symp., M. Tiryakioglu, P.N. Crepeau, eds., TMS, Warrendale, PA, 2005, pp. 365–74

    Google Scholar 

  35. J. Banaszek, S. McFadden, D.J. Browne, L. Sturz, G. Zimmermann: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1476–84

    Article  ADS  CAS  Google Scholar 

  36. G.F. Franklin, J.D. Powell, A. Emami-Naeini: Feedback Control of Dynamic Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ, 2006, pp. 95–106

    Google Scholar 

  37. Y.Z. Sun, G. Cao, S.S. Yao, C. Yu, W.Z. Zhang: J. Shanghai Jiaotong Univ., 2001, vol. 35, pp. 473–76

    CAS  Google Scholar 

  38. M.B. Djurdjevic, J.H. Sokolowski, W.T. Kierkus, G. Byezynski: Mater. Sci. Forum, 2007, vols. 539–543, pp. 299–304

    Article  Google Scholar 

  39. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 37–49

    Google Scholar 

  40. G. Reinhart, N. Mangelinck-Noël, H. Nguyen Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Härtwig, J. Baruchel: Mater. Sci. Eng., A, 2005, vols. 413–414, pp. 384–88

    Google Scholar 

  41. R.H. Mathiesen, L. Arnberg, P. Bleuet, A. Somogyi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2515–25

    Article  CAS  Google Scholar 

  42. J. Banaszek, D.J. Browne, P. Furmanski: Arch. Thermodyn., 2003, vol. 24, pp. 37–57

    CAS  Google Scholar 

  43. G. Guillemot, C.-A. Gandin, H. Combeau: ISIJ Int., 2006, vol. 46, pp. 880–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the European Space Agency through Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL), a project of the Microgravity Application Promotions program. One of the authors (SMF) expresses his gratitude to Professor Emeritus Annraoi De Paor, for providing illuminating discussions on Control and Filter Theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. McFadden.

Additional information

Manuscript submitted June 11, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFadden, S., Browne, D. & Gandin, CA. A Comparison of Columnar-to-Equiaxed Transition Prediction Methods Using Simulation of the Growing Columnar Front. Metall Mater Trans A 40, 662–672 (2009). https://doi.org/10.1007/s11661-008-9708-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9708-x

Keywords

Navigation