Skip to main content
Log in

Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of Alloy Solidification

  • Symposia: Solidification Modeling and Microstructure ZFormation
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A meso-scale front-tracking model (FTM) of nonequilibrium binary alloy dendritic solidification has been extended to incorporate Kurz, Giovanola, and Trivedi (KGT) dendrite kinetics and a Scheil solidification path. Model validation via comparison with thermocouple measurements from a solidification experiment, in which natural convection is limited by design, is presented. Via solution of the flow field due to natural thermal buoyancy, it is shown that resultant liquid-phase convection creates conditions in which equiaxed solidification is favored. Comparison with simulations in which casting solidification is diffusion controlled show that natural convection has greatest effect at intermediate times, but that at early and late stages of columnar solidification, the differences are relatively small. It is, however, during the time of greatest divergence between the simulations that the authors’ predictive index for equiaxed zone formation is enhanced most by convection. Finally, the columnar-to-equiaxed transition is directly simulated, in directional solidification controlled by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c :

specific heat

D l :

mass diffusivity in liquid

E a :

source term accounting for front advection

E t :

source term accounting for dendrite thickening

f :

mass fraction

G :

temperature gradient

g :

internal volumetric fraction

g i :

component of gravity vector

H :

specific enthalpy

h :

heat-transfer coefficient

K 0 :

morphological constant

K 1 :

coefficient of KGT model

K 2 :

coefficient of KGT model

k :

thermal conductivity

L :

latent heat term, L=(c s -c l )T ref +L ref

L ref :

latent heat at reference temperature

ni :

component of outward normal

Q v :

Darcy’s source term

r :

volumetric fraction

S :

surface

T :

temperature

T env :

ambient temperature

T init :

initial temperature

T ref :

reference temperature

T t :

dendrite tip temperature

T L :

liquidus temperature

T M :

melting point of pure metal

t :

time

V :

volume

V m :

volume of columnar mush

v :

apparent velocity

v l :

liquid velocity

x i :

Cartesian coordinate

β T :

thermal expansion coefficient of liquid

ΔT :

temperature difference

Δt :

time-step

Γ :

Gibbs-Thomson coefficient

κ p :

partition coefficient

μ l :

dynamic viscosity of liquid

ρ :

density

ρ ref :

reference density in Boussinesq model

Subscripts:

 

CV :

pertinent to control volume

i, j :

Cartesian coordinate direction

l :

liquid

m :

pertinent to columnar mush

s :

solid

References

  1. C.-A. Gandin, M. Rappaz: Acta Metall. Mater., 1994, vol. 42 (7), pp. 2233–46

    Article  CAS  Google Scholar 

  2. I. Steinbach, C. Beckermann, B. Kauerauf, Q. Li, J. Guo: Acta Mater., 1999, vol. 47 (3), pp. 971–82

    Article  CAS  Google Scholar 

  3. D. Juric, G. Tryggvason: J. Comp. Phys., 1996, vol. 123, pp. 127–48

    Article  CAS  Google Scholar 

  4. H.B. Dong, P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68

    Article  CAS  Google Scholar 

  5. A. Badillo, C. Beckermann: Acta Mater., 2006, vol. 54, pp. 2015–26

    Article  CAS  Google Scholar 

  6. M. Wu, A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31

    Article  CAS  Google Scholar 

  7. D.J. Browne, J.D. Hunt: Num. Heat Transfer, Part B: Fundam., 2004, vol. 45 (5), pp. 395–419

    Article  Google Scholar 

  8. S.C. Flood, J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 543–51

    Article  CAS  Google Scholar 

  9. J. Banaszek, P. Furmanski, M. Rebow: Modelling of Transport Phenomena in Cooled and Solidifying Single Component and Binary Media, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, 2005. ISBN 83-7207-585-9

  10. J. Banaszek, D.J. Browne: Mater. Trans., 2005, vol. 46 (6), pp. 1378–87

    Article  CAS  Google Scholar 

  11. M.H. Burden, J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109–16

    Article  CAS  Google Scholar 

  12. W. Kurz, B. Giovanola, R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  13. C.-A Gandin, C.H. Charbon, M. Rappaz: ISIJ Int., 1995, vol. 35 (6), pp. 651–57

    CAS  Google Scholar 

  14. M.F. Zhu, J.M. Kim, C.P. Hong: ISIJ Int., 2001, vol. 41, pp. 992–98

    CAS  Google Scholar 

  15. D.J. Browne: ISIJ Int., 2005, vol. 45 (1), pp. 37–44

    Article  CAS  Google Scholar 

  16. M.A. Martorano, V.B. Biscuola: Model. Simul. Mater. Sci. Eng. 2006, vol. 14, pp. 1225–43

    Article  CAS  Google Scholar 

  17. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington, DC, 1980

    Google Scholar 

  18. D.J. Browne, D. O’Mahoney: Metall. Mater. Trans. A, 2001, vol. 32 (12), pp. 3055–63

    Article  Google Scholar 

  19. W.D. Bennon, F.P. Incropera: Num. Heat Transfer, 1988, vol. 13, pp. 277–96

    Article  Google Scholar 

  20. C. Prakash, V.R. Voller: Num. Heat Transfer Part B, 1989, vol. 15, pp. 171–89

    Article  Google Scholar 

  21. D.S. Schrage: J. Cryst. Growth, 1999, vol. 205, pp. 410–26

    Article  CAS  Google Scholar 

  22. C.A. Gandin, G. Guillemot, B. Appolaire, N.T. Niane: Mater. Sci. Eng. A, 2003, vol. 342, pp. 44–50.

    Article  Google Scholar 

  23. J.P. Van Doormal, G.D. Raithby: Num. Heat Transfer, 1984, vol. 17, pp. 147–63

    Article  Google Scholar 

  24. M. Rebow, D.J. Browne: Scripta Mater., 2006, vol. 56, pp. 481–84.

    Google Scholar 

  25. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83

    Article  CAS  Google Scholar 

  26. S. McFadden and D.J. Browne: Proc. Eurotherm Seminar 82 Numerical Heat Transfer 2005 (Gliwice-Cracow) 2, A.J. Nowak, R.A. Bialecki, and G. Wecel, eds., Institute of Thermal Technology, Silesian University of Technology, Gliwice, Poland, 2005, pp. 205–14. ISBN 83-922381-2-5

  27. S. McFadden, D.J. Browne: Scripta Mater., 2006, vol. 55 (10), pp. 847–50

    Article  CAS  Google Scholar 

  28. S. McFadden, D.J. Browne, J. Banaszek: Mater. Sci. Forum, 2006, vol. 508, pp. 325–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Space Agency for funding via the CETSOL (columnar-equiaxed transition in solidification processing) Microgravity Applications Promotion project (Contract No. CCN002-14313/01/NL/SH). We also thank Mr. M. Seredynski, Warsaw University of Technology, for performing some of the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.J. Browne.

Additional information

This article is based on a presentation made in the symposium entitled “Solidification Modeling and Microstructure Formation: in Honor of Prof. John Hunt,” which occurred March 13–15, 2006 during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the TMS Materials Processing and Manufacturing Division, Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaszek, J., McFadden, S., Browne, D. et al. Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of Alloy Solidification. Metall Mater Trans A 38, 1476–1484 (2007). https://doi.org/10.1007/s11661-007-9140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9140-7

Keywords

Navigation