Skip to main content
Log in

Correlation of microstructure and fracture properties of API X70 pipeline steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of microstructure on fracture toughness and transition temperature of high-toughness X70 pipeline steels were investigated in this study. Three types of steels were fabricated by varying alloying elements such as C, Cu, and Mo, and their microstructures were varied by rolling conditions such as finish rolling temperature and finish cooling temperature. Charpy V-notch (CVN) impact tests and pressed notch drop-weight tear tests (DWTT) were conducted on the rolled steel specimens. The charpy impact test results indicated that the specimens rolled in the single-phase region of the steel containing a reduced amount of C and Mo had the highest upper shelf energy (USE) and the lowest energy transition temperature (ETT) because of the appropriate formation of acicular, quasipolygonal, or polygonal ferrite and the decreased fraction of martensite-austenite constituents. Most of the specimens rolled in the single-phase region also showed excellent DWTT properties as the percent shear area (pct SA) well exceeded 85 pct, irrespective of finish cooling temperatures, while their USE was higher than that of the specimens rolled in the two-phase region. Thus, overall fracture properties of the specimens rolled in the single-phase region were better than those of the specimens rolled in the two-phase region, considering both USE and pct SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hopkins: Proc. 3rd Int. Pipeline Technol. Conf., Elsevier, Brugge, Belgium, 2000, vol. 1, pp. 1–26.

    Google Scholar 

  2. J.E. Hood: Int. J. Pressure Vessel Piping, 1974, vol. 2, pp. 165–78.

    Article  Google Scholar 

  3. K.T. Corbett, R.R. Bowen, and C.W. Petersen: Proc. 13th Int. Offshore and Polar Engineering Conf., Honolulu, HIs 2003, pp. 105–12.

  4. M.K. Gräf, H.G. Hillenbrand, C.J. Heckmann, and K.A. Niederhoff: Proc. 13th Int. Offshore and Polar Engineering Conf., Honolulu, HI, 2003, pp. 97–104.

  5. A. Glover: Proc. Int. Pipe Dreamer's Conf., Scientific Surveys, Ltd. Yokohama, Japan, 2002, pp. 33–52.

  6. G.M. McClure, A.R. Duffy, and R.J. Eiber: J. Eng. Industry, 1965, vol. 4, pp. 265–78.

    Google Scholar 

  7. G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: Can. Metall. Q., 1980, vol. 19, pp. 59–77.

    CAS  Google Scholar 

  8. C. Kim, W. Kim, and Y. Kho: Met. Mater. Int., 2002, vol. 8, pp. 197–202.

    CAS  Google Scholar 

  9. X.W. Zhao, J.H. Luo, M. Zheng, M.X. Lu, and H.L. Li: Met. Mater. Int., 2002, vol. 8, pp. 479–85.

    CAS  Google Scholar 

  10. R.J. Eiber, T.A. Bubenik, and W.A. Maxey: Fracture Control Technology for Natural Gas Pipelines, Pipeline Research Council International Inc., Arlington, VA, 1993.

    Google Scholar 

  11. G. Mannucci and D. Harris: “Fracture Properties of API X100 Gas Pipeline Steels,” Final Report, European Commission, Brussels, Belgium, 2002, pp. 1–128.

    Google Scholar 

  12. D.J. Horsley: Eng. Fract. Mech., 2003, vol. 70, pp. 547–52.

    Article  Google Scholar 

  13. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore and Polar Engineering Conf., Honolulu, HI, 2003, pp. 10–18.

  14. API Recommended Practice 5L3, American Petroleum Institute, Washington D.C., 1996.

  15. H. Tamehiro, H. Asahi, T. Hara, Y. Terada, M.J. Luton, J. Koo, N.V. Bangaru, and C.W. Petersen: U.S. Patent 6264760, 2001.

  16. J.M. Hyzak and J.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    CAS  Google Scholar 

  17. D. Lonsdale and P.E.J. Flewitt: Metall. Trans. A, 1978, vol. 9A, pp. 1619–23.

    CAS  Google Scholar 

  18. Y.J. Park and J.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1653–64.

    CAS  Google Scholar 

  19. N.J. Kim: J. Met., 1983, vol. 35, pp. 21–27.

    CAS  Google Scholar 

  20. N.J. Kim, A.J. Yang and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471–74.

    CAS  Google Scholar 

  21. D. Kim, M.K. Lee, C. Kim, M.L. Wenner, R.H. Wagoner, F. Barlat, K. Chung, J.R. Youn, and T.J. Kang: Met. Mater. Int., 2003, vol. 9, pp. 561–70.

    Article  Google Scholar 

  22. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, NY, 1983.

    Google Scholar 

  23. R. Honeycombe and H.K.D.H. Bhadeshia. Steels—Microstructure and Properties, Edward Arnold, London, 1995.

    Google Scholar 

  24. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1571–77.

    CAS  Google Scholar 

  25. S. Lee, D. Kwon, Y.K. Lee, and O. Kwon: Metall. Trans. A., 1995, vol. 26A, pp. 1093–110.

    Article  CAS  Google Scholar 

  26. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-strength Low-Alloy Steels, Butterworth & Co. Ltd., 1988.

  27. A.K. De, J.G. Speer, and D.K. Matlock: Adv. Mater. Process, 2003, vol. 161, pp. 27–30.

    CAS  Google Scholar 

  28. ASTM Standard E23-02, ASTM, Philadelphia, PA, 2002.

  29. B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, and C.S. Woo: Mater. Sci. Eng. A, 2004, vol. A368, pp. 18–27.

    Article  CAS  Google Scholar 

  30. Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1.

  31. T. Hayashi, F. Kawabata, and K. Amano: Proc. Materials Solution '97 on Accelerated Cooling/Direct Quenching of Steels, ASM International, Materials Park, OH, 1997, pp. 93–99.

    Google Scholar 

  32. G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.

    CAS  Google Scholar 

  33. J.Y. Yoo and J.S. Woo: Proc. Int. Pipe Dreamer's Conf., Scientific Surveys Ltd., Yokohama, Japan, 2002, pp. 441–56.

    Google Scholar 

  34. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  35. S. Kim, S. Lee, Y.R. Im, H.C. Lee, S.J. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2027–37.

    Article  CAS  Google Scholar 

  36. N. Iwasaki, T. Yamaguchi, and T. Taira: Mech. Work Steel Process, 1975, vol. 13, pp. 294–314.

    CAS  Google Scholar 

  37. H. Kashimura, M. Ogasawara, and H. Mimura: Metal Progr., 1976, Nov., pp. 58–62.

    Google Scholar 

  38. K. Seifert: Mater. Testing, 1984, vol. 26, pp. 277–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

are jointly appointed with the Materials Science and Engineering Department, Pohang University of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B., Kim, Y.M., Lee, S. et al. Correlation of microstructure and fracture properties of API X70 pipeline steels. Metall Mater Trans A 36, 725–739 (2005). https://doi.org/10.1007/s11661-005-1004-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-1004-4

Keywords

Navigation