Skip to main content
Log in

Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Druce and B.C. Edwards: Nucl. Energy, 1980, vol. 19, pp. 347–60.

    CAS  Google Scholar 

  2. K. Suzuki: J. Nucl. Mater., 1982, vols. 108–109, pp. 443–50.

    Article  Google Scholar 

  3. J.R. Hawthorne: Nucl. Eng. Design, 1985, vol. 89, pp. 223–32.

    Article  CAS  Google Scholar 

  4. P. Brown, S.G. Druce, and J.F. Knott: Acta Metall., 1986, vol. 34, pp. 1121–31.

    Article  Google Scholar 

  5. K.D. Haverkamp, K. Forch, K.-H. Piehl, and W. Witte: Nucl. Eng. Design, 1984, vol. 81, pp. 207–17.

    Article  CAS  Google Scholar 

  6. R. Havel, M. Vacek, and M. Brumovsky: ASTM STP 1170, Philadelphia, PA, 1993, pp. 163–71.

  7. D.P.G. Lidbury and E. Morland: Int. J. Pressure Vessel Piping, 1987, vol. 29, pp. 343–428.

    Article  Google Scholar 

  8. S.G. Druce: Acta Metall., 1986, vol. 34, pp. 219–32.

    Article  CAS  Google Scholar 

  9. R.L. Bodnar, R.F. Cappellini, and R.I. Jaffee: Ironmaking and Steelmaking, 1987, vol. 14, pp. 185–94.

    CAS  Google Scholar 

  10. J.P. Naylor: Metall. Trans. A, 1979, vol. 10A, pp. 861–73.

    CAS  Google Scholar 

  11. T. Enami, S. Sato, T. Tanaka, and T. Funakoshi: Kawasaki Steel Tech. Rep., 1974, vol. 6, pp. 145–61.

    CAS  Google Scholar 

  12. N. Ohashi, M. Tanaka, T. Enami, H. Oi, and T. Sekine: Kawasaki Steel Tech. Rep., 1979, vol. 11, pp. 56–66.

    Google Scholar 

  13. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  14. J.H. Yoon, B.S. Lee, and J.H. Hong: Met. Mater. Int., 2001, vol. 7, pp. 505–12.

    Article  CAS  Google Scholar 

  15. K. Suzuki, I. Sato, and H. Tsukada: Nucl. Eng. Design, 1994, vol. 151, pp. 513–22.

    Article  CAS  Google Scholar 

  16. P. Bocquet, A. Cheviet, and R. Dumont: Nucl. Eng. Design, 1994, vol. 151, pp. 503–11.

    Article  CAS  Google Scholar 

  17. H.G. Pisarski and J. Kudoh: in Welding Metallurgy of Structural Steels, J.Y. Koo, ed., TMS, Denver, CO, 1987, pp. 263–75.

    Google Scholar 

  18. K. Uchino and Y. Ohno: Proc. 7th Int. Conf. on Offshore Mechanics and Arctic Engineering, 1988, Houston, TX, ASME, Golden, CO, pp. 159–65.

    Google Scholar 

  19. J. Jang, Y. Yang, W. Kim, and D. Kwon: Met. Mater., 1997, vol. 3, pp. 230–38.

    Article  CAS  Google Scholar 

  20. ASTM Standard E399-90, ASTM, Philadelphia, PA, 1990.

  21. ASTM Standard E1737-96, ASTM, Philadelphia, PA, 1996.

  22. T.L. Anderson and R.H. Dodds: J. Testing Evaluation, 1991, vol. 19, pp. 123–34.

    Google Scholar 

  23. British Standards Institution Document BS 5762, British Standards Institution, London, U.K., 1979.

  24. ASTM Standard E1921-97, ASTM, Philadelphia, PA, 1997.

  25. R.L. Miller: Trans. ASM, 1964, vol. 57, pp. 892–99.

    CAS  Google Scholar 

  26. R.L. Miller: Trans. ASM, 1968, vol. 61, pp. 592–97.

    Google Scholar 

  27. S. Kim, S.Y. Kang, S.J. Oh, S.-J. Kwon, S. Lee, J.H. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1107–19.

    CAS  Google Scholar 

  28. D. Rosenthal: Trans. ASME, 1946, Nov., pp. 849–66.

  29. Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1.

  30. Document Number IX-1533-88, IXJ-123-87 Revision 2, IIW, Paris, France, 1988.

  31. S. Kim, Y.R. Im, S. Lee, H.C. Lee, Y.J. Oh, and J.H. Hong: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 903–11.

    CAS  Google Scholar 

  32. K. Sato and M. Toyoda: Proc. 7th Int. Conf. on Offshore Mechanics and Arctic Engineering, 1988, Houston, TX, ASME, Golden, CO, pp. 495–502.

    Google Scholar 

  33. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, 1988, ch. 6.

    Google Scholar 

  34. K. Wallin: Eng. Fract. Mech., 1984, vol. 19, pp. 1085–93.

    Article  Google Scholar 

  35. T.L. Anderson and D. Stienstra: J. Testing Evaluation, 1989, vol. 17, pp. 46–53.

    Article  Google Scholar 

  36. A.R. Marder: Metall. Trans. A, 1981, vol. 12A, pp. 1569–79.

    Google Scholar 

  37. X.P. Shen and R. Priestner: Metall. Trans. A, 1990, vol. 21A, pp. 2547–53.

    CAS  Google Scholar 

  38. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Acta Metall., 1984, vol. 32, pp. 1779–88.

    Article  CAS  Google Scholar 

  39. C.A.N. Lanzillotto and F.B. Pickering: Met. Sci., 1982, vol. 16, pp. 371–82.

    Article  CAS  Google Scholar 

  40. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, NY, 1996, ch. 10.

    Google Scholar 

  41. O.M. Akselsen, J.K. Solberg, and Ø. Grong: Scand. J. Metall., 1998, vol. 17, pp. 194–200.

    Google Scholar 

  42. O.M. Akselsen, Ø. Grong, and J.K. Solberg: Mater. Sci. Technol., 1987, vol. 3, pp. 649–65.

    CAS  Google Scholar 

  43. H.P. Shen, T.C. Lei, and J.Z. Liu: Mater. Sci. Technol., 1986, vol. 2, pp. 28–33.

    CAS  Google Scholar 

  44. N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 483–89.

    Google Scholar 

  45. A.F. Szewezyk and J. Garland: Metall. Trans. A, 1982, vol. 13A, pp. 1821–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Im, YR., Lee, S. et al. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels. Metall Mater Trans A 35, 2027–2037 (2004). https://doi.org/10.1007/s11661-004-0151-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0151-3

Keywords

Navigation