Skip to main content
Log in

Correlation of rolling condition, microstructure, and low-temperature toughness of X70 pipeline steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below −100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Denys: Pipeline Technology, Elsevier, Brugge, Belgium, 2000, vols. I–II.

    Google Scholar 

  2. J.E. Hood: Int. J. Pres. Ves. Piping, 1974, vol. 2, pp. 165–78.

    Article  Google Scholar 

  3. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: ISOPE Symp. High-Performance Materials in Offshore Industry, Honolulu, HI, 2003, pp. 10–18.

  4. M. Matsuda and H. Miura: Met. Mater. Int., 2003, vol. 9, pp. 537–42.

    CAS  Google Scholar 

  5. K.T. Corbett, R.R. Bowen, and C.W. Petersen: ISOPE Symp. High-Performance Materials in Offshore Industry, Honolulu, HI, 2003, pp. 105–12.

  6. H.N. Han, C.-S. Oh, D.W. Suh, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 221–29.

    CAS  Google Scholar 

  7. G. Mannucci, and D. Harris: “Fracture Properties of API X100 Gas Pipeline Steels”, Final Report, European Commission, Brussels, Belgium, 2002, pp. 1–128.

    Google Scholar 

  8. G.M. McClure, A.R. Duffy, and R.J. Eiber: J. Eng. Industry, 1965, vol. 4, pp. 265–78.

    Google Scholar 

  9. G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: ASM Symp. on What Does Charpy Test Really Tell Us?, ASM, Metals Park, OH, 1978, pp. 201–25.

    Google Scholar 

  10. G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: Can. Metall. Q., 1980, vol. 19, pp. 59–77.

    CAS  Google Scholar 

  11. API Recommended Practice 5L3, American Petroleum Institute, Washington, DC, 1996.

  12. D.J. Horsley: Eng. Fract. Mech., 2003, vol. 70, pp. 547–52.

    Article  Google Scholar 

  13. R.J. Eiber, T.A. Bubenik, and W.A. Maxey: Fracture Control Technology For Natural Gas Pipelines, Pipeline Research Council International Inc., Arlington, VA, 1993.

    Google Scholar 

  14. ASTM Standard E23-02, ASTM, West Conshohocken, PA, 2002.

  15. T.-H. Lee, C.-S. Oh, C.G. Lee, S.-J. Kim, and S. Takaki: Met. Mater. Int., 2004, vol. 10, pp. 231–36.

    CAS  Google Scholar 

  16. A.K. De, J.G. Speer, and D.K. Matlock: Adv. Mater. Process, 2003, vol. 161, pp. 27–30.

    CAS  Google Scholar 

  17. Atlas for Bainitic Microstructures, Iron Steel Inst. Jpn., Tokyo, 1992, vol. 1.

  18. T. Hayashi, F. Kawabata, and K. Amano: Proc. Materials Solution ’97 on Accelerated Cooling/Direct Quenching of Steels, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 93–99.

    Google Scholar 

  19. G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.

    CAS  Google Scholar 

  20. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  21. S. Kim, S. Lee, Y.-R. Im, H.-C. Lee, S.-J. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2027–37.

    Article  CAS  Google Scholar 

  22. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-strength Low-Alloy Steels, Butterworth & Co. Ltd., London, 1988.

    Google Scholar 

  23. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, 1988.

    Google Scholar 

  24. J.M. Hyzak and I.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    CAS  Google Scholar 

  25. N.J. Kim: J. Met., 1983, vol. 35, pp. 21–27.

    CAS  Google Scholar 

  26. N.J. Kim, A.J. Yang, and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471–74.

    CAS  Google Scholar 

  27. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1571–77.

    CAS  Google Scholar 

  28. C.-S. Oh, H.N. Han, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399–406.

    Article  CAS  Google Scholar 

  29. B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 725–39.

    CAS  Google Scholar 

  30. N. Iwasaki, T. Yamaguchi, and T. Taira: Mech. Work Steel Process, 1975, vol. 13, pp. 294–314.

    CAS  Google Scholar 

  31. H. Kashimura, M. Ogasawara, and H. Mimura: Met. Progr., 1976, Nov., pp. 58–62.

  32. K. Seifert: Mater. Testing, 1984, vol. 26, pp. 277–80.

    Google Scholar 

  33. B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, and C.S. Woo: Mater. Sci. Eng. A, 2004, vol. A368, pp. 18–27.

    CAS  Google Scholar 

  34. F. Rivalin, A. Pineau, M.D. Fant, and J. Besson: Eng. Fract. Mech., 2001, vol. 68, pp. 329–45.

    Article  Google Scholar 

  35. P. Salvini, A. Fonze, and G. Mannucci: Eng. Fract. Mech., 2003, vol. 70, pp. 553–66.

    Article  Google Scholar 

  36. M. Toyoda and R. Denys: Proc. Int. Pipe Dreamer’s Conf., Scientific Surveys, Ltd., Yokohama, Japan, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B., Kim, Y.M., Lee, S. et al. Correlation of rolling condition, microstructure, and low-temperature toughness of X70 pipeline steels. Metall Mater Trans A 36, 1793–1805 (2005). https://doi.org/10.1007/s11661-005-0043-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0043-1

Keywords

Navigation